Multilingual-mistral-asian

This model is a Mixure of Experts (MoE) made with mergekit (mixtral branch). It uses the following base models:

🧩 Configuration

dtype: bfloat16
experts:
- positive_prompts:
  - arabic
  - arab
  - arabia
  - answer in arabic
  source_model: gagan3012/Mistral_arabic_dpo
- positive_prompts:
  - korean
  - answer in korean
  - korea
  source_model: davidkim205/komt-mistral-7b-v1
- positive_prompts:
  - chinese
  - china
  - answer in chinese
  source_model: OpenBuddy/openbuddy-zephyr-7b-v14.1
- positive_prompts:
  - hindi
  - india
  - hindu
  - answer in hindi
  source_model: manishiitg/open-aditi-hi-v1
gate_mode: hidden

πŸ’» Usage

!pip install -qU transformers bitsandbytes accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "gagan3012/Multilingual-mistral-asian"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)

messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
15
Safetensors
Model size
24.2B params
Tensor type
BF16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.