Capstone_TinyBert / README.md
gArthur98's picture
End of training
3314d0f
|
raw
history blame
1.64 kB
---
base_model: huawei-noah/TinyBERT_General_4L_312D
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: Capstone_TinyBert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Capstone_TinyBert
This model is a fine-tuned version of [huawei-noah/TinyBERT_General_4L_312D](https://huggingface.co./huawei-noah/TinyBERT_General_4L_312D) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3172
- Accuracy: 0.8772
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4628 | 1.0 | 313 | 0.3617 | 0.852 |
| 0.3369 | 2.0 | 626 | 0.3218 | 0.8644 |
| 0.2949 | 3.0 | 939 | 0.3143 | 0.8744 |
| 0.2699 | 4.0 | 1252 | 0.3192 | 0.8718 |
| 0.2481 | 5.0 | 1565 | 0.3172 | 0.8772 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3