fuzzy-mittenz's picture
Update README.md
73ec572 verified
metadata
license: other
license_name: nvidia-open-model-license
license_link: >-
  https://developer.download.nvidia.com/licenses/nvidia-open-model-license-agreement-june-2024.pdf
base_model: IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml
tags:
  - llama-cpp
  - gguf-my-repo

CHATML TEMP

fuzzy-mittenz/Llama-3.1-Minitron-4B-Width-Base-chatml-IQ4_NL-GGUF

used fluently-sets/reasoning-1-1k-demo dataset trasition QAT

This model was converted to GGUF format from IntervitensInc/Llama-3.1-Minitron-4B-Width-Base-chatml using llama.cpp Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)

brew install llama.cpp

Invoke the llama.cpp server or the CLI.

CLI:

llama-cli --hf-repo fuzzy-mittenz/Llama-3.1-Minitron-4B-Width-Base-chatml-IQ4_NL-GGUF --hf-file llama-3.1-minitron-4b-width-base-chatml-iq4_nl-imat.gguf -p "The meaning to life and the universe is"

Server:

llama-server --hf-repo fuzzy-mittenz/Llama-3.1-Minitron-4B-Width-Base-chatml-IQ4_NL-GGUF --hf-file llama-3.1-minitron-4b-width-base-chatml-iq4_nl-imat.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

Step 3: Run inference through the main binary.

./llama-cli --hf-repo fuzzy-mittenz/Llama-3.1-Minitron-4B-Width-Base-chatml-IQ4_NL-GGUF --hf-file llama-3.1-minitron-4b-width-base-chatml-iq4_nl-imat.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo fuzzy-mittenz/Llama-3.1-Minitron-4B-Width-Base-chatml-IQ4_NL-GGUF --hf-file llama-3.1-minitron-4b-width-base-chatml-iq4_nl-imat.gguf -c 2048