metadata
language:
- en
tags:
- fusion-bench
base_model: meta-llama/Llama-3.2-1B-Instruct
pipeline_tag: text-classification
library_name: transformers
datasets:
- hendrydong/preference_700K
Model Overview
This model has been fine-tuned on the hendrydong/preference_700K dataset for 2 epochs, using the Llama-3.2-1B-Instruct model as the base. See config for more details about the training hyperparameters.
Fine-tuning was done using the fusion-bench:
fusion_bench --config-name llama_full_finetune \
fabric.loggers.name=llama_full_bradley_terry_rm \
method=lm_finetune/bradley_terry_rm \
method.dataloader_kwargs.batch_size=8 \
method.accumulate_grad_batches=16 \
method.lr_scheduler.min_lr=1e-7 \
method.lr_scheduler.max_lr=5e-6 \
method.lr_scheduler.warmup_steps=100 \
method.optimizer.lr=0 \
method.optimizer.weight_decay=0.001 \
method.gradient_clip_val=1 \
method.max_epochs=2 \
method.checkpoint_save_interval=epoch \
method.checkpoint_save_frequency=1 \
modelpool=SeqenceClassificationModelPool/llama_preference700k
8 GPUs, per-GPU batch size is 8, with gradient accumulation of 16 steps, so the effective batch size is 1024.