fursov's picture
End of training
4f426d7 verified
---
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
datasets:
- fursov/gec_ner_val3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner-gec-roberta-large-v4
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: fursov/gec_ner_val3
type: fursov/gec_ner_val3
metrics:
- name: Precision
type: precision
value: 0.643409688321442
- name: Recall
type: recall
value: 0.5775246056357017
- name: F1
type: f1
value: 0.6086894738711854
- name: Accuracy
type: accuracy
value: 0.9614897122818877
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ner-gec-roberta-large-v4
This model is a fine-tuned version of [roberta-large](https://huggingface.co./roberta-large) on the fursov/gec_ner_val3 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2489
- Precision: 0.6434
- Recall: 0.5775
- F1: 0.6087
- Accuracy: 0.9615
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
| Training Loss | Epoch | Step | Accuracy | F1 | Validation Loss | Precision | Recall |
|:-------------:|:-----:|:----:|:--------:|:------:|:---------------:|:---------:|:------:|
| 0.2536 | 0.58 | 500 | 0.9347 | 0.0376 | 0.2469 | 0.0814 | 0.0245 |
| 0.2316 | 1.15 | 1000 | 0.9359 | 0.1365 | 0.2339 | 0.2272 | 0.0975 |
| 0.2175 | 1.73 | 1500 | 0.9392 | 0.1823 | 0.2172 | 0.2842 | 0.1342 |
| 0.1757 | 2.3 | 2000 | 0.9438 | 0.3123 | 0.1979 | 0.4011 | 0.2556 |
| 0.1682 | 2.88 | 2500 | 0.9502 | 0.3911 | 0.1817 | 0.4787 | 0.3307 |
| 0.121 | 3.46 | 3000 | 0.9537 | 0.4504 | 0.1753 | 0.5310 | 0.3910 |
| 0.0982 | 4.03 | 3500 | 0.9556 | 0.4980 | 0.1807 | 0.5606 | 0.4480 |
| 0.0858 | 4.61 | 4000 | 0.9577 | 0.5304 | 0.1732 | 0.5867 | 0.4839 |
| 0.0563 | 5.18 | 4500 | 0.1839 | 0.6007 | 0.5155 | 0.5548 | 0.9585 |
| 0.0586 | 5.76 | 5000 | 0.1804 | 0.6231 | 0.5237 | 0.5691 | 0.9605 |
| 0.0404 | 6.34 | 5500 | 0.1948 | 0.6214 | 0.5423 | 0.5792 | 0.9599 |
| 0.0397 | 6.91 | 6000 | 0.1994 | 0.6309 | 0.5458 | 0.5852 | 0.9610 |
| 0.0281 | 7.49 | 6500 | 0.2131 | 0.6345 | 0.5568 | 0.5931 | 0.9610 |
| 0.0182 | 8.06 | 7000 | 0.2249 | 0.6507 | 0.5649 | 0.6047 | 0.9625 |
| 0.0188 | 8.64 | 7500 | 0.2322 | 0.6413 | 0.5782 | 0.6081 | 0.9612 |
| 0.0123 | 9.22 | 8000 | 0.2473 | 0.6506 | 0.5777 | 0.6120 | 0.9622 |
| 0.0123 | 9.79 | 8500 | 0.2491 | 0.6427 | 0.5771 | 0.6081 | 0.9614 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.0+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0