furion-123's picture
End of training
b1e2608 verified
metadata
license: apache-2.0
base_model: microsoft/swin-tiny-patch4-window7-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-rsna-2018
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7410179640718563

swin-tiny-patch4-window7-224-finetuned-rsna-2018

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5745
  • Accuracy: 0.7410

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6448 0.9940 83 0.6735 0.6737
0.736 2.0 167 0.6969 0.6557
0.6895 2.9940 250 0.6265 0.6916
0.6631 4.0 334 0.6275 0.7156
0.6725 4.9940 417 0.6311 0.7126
0.6778 6.0 501 0.6194 0.7066
0.6734 6.9940 584 0.6024 0.7141
0.6231 8.0 668 0.6082 0.7231
0.6164 8.9940 751 0.5846 0.7171
0.6261 10.0 835 0.5682 0.7380
0.6153 10.9940 918 0.6007 0.7186
0.6046 12.0 1002 0.5745 0.7410
0.5679 12.9940 1085 0.5957 0.7231
0.6027 14.0 1169 0.5884 0.7216
0.6249 14.9940 1252 0.5808 0.7365
0.6059 16.0 1336 0.5699 0.7350
0.5776 16.9940 1419 0.5770 0.7320
0.5903 18.0 1503 0.5806 0.7216
0.5633 18.9940 1586 0.5768 0.7380
0.5544 20.0 1670 0.5830 0.7350
0.5515 20.9940 1753 0.5966 0.7260
0.5249 22.0 1837 0.6079 0.7335
0.5212 22.9940 1920 0.5972 0.7246
0.5268 24.0 2004 0.5922 0.7231
0.5406 24.9940 2087 0.6100 0.7350
0.5257 26.0 2171 0.6004 0.7305
0.5152 26.9940 2254 0.6092 0.7320
0.4858 28.0 2338 0.6100 0.7231
0.5412 28.9940 2421 0.6116 0.7350
0.4972 29.8204 2490 0.6120 0.7290

Framework versions

  • Transformers 4.43.3
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1