fsicoli's picture
End of training
a0d0d95 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - fsicoli/common_voice_18_0
metrics:
  - wer
model-index:
  - name: whisper-large-v3-pt-3000h-3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: fsicoli/common_voice_18_0 pt
          type: fsicoli/common_voice_18_0
          config: pt
          split: None
          args: pt
        metrics:
          - name: Wer
            type: wer
            value: 0.10736707238949392

whisper-large-v3-pt-3000h-3

This model is a fine-tuned version of openai/whisper-large-v3 on the fsicoli/common_voice_18_0 pt dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1501
  • Wer: 0.1074

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 10.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1388 0.9996 691 0.1501 0.1074
0.108 1.9993 1382 0.1619 0.1153
0.091 2.9989 2073 0.1697 0.1124
0.0461 4.0 2765 0.1764 0.1120
0.0264 4.9996 3456 0.2024 0.1133
0.0203 5.9993 4147 0.2200 0.1099
0.0129 6.9989 4838 0.2277 0.1114
0.0091 8.0 5530 0.2552 0.1067
0.0063 8.9996 6221 0.2565 0.1054
0.0019 9.9964 6910 0.2671 0.1042

Framework versions

  • Transformers 4.45.0.dev0
  • Pytorch 2.4.0+cu124
  • Datasets 2.18.1.dev0
  • Tokenizers 0.19.1