fsicoli's picture
End of training
cadc738 verified
metadata
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - >-
    fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
metrics:
  - wer
model-index:
  - name: whisper-large-v3-pt-1000h
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: >-
            fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
            default
          type: >-
            fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.11132023872721715

whisper-large-v3-pt-1000h

This model is a fine-tuned version of openai/whisper-large-v3 on the fsicoli/cv17-fleurs-coraa-mls-ted-alcaim-cf-cdc-lapsbm-lapsmail-sydney-lingualibre-voxforge-tatoeba default dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5576
  • Wer: 0.1113

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10000
  • training_steps: 82000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2717 0.39 10000 0.4143 0.1341
0.2646 0.79 20000 0.4141 0.1284
0.2244 1.18 30000 0.5361 0.1253
0.2056 1.57 40000 0.4714 0.1223
0.2034 1.97 50000 0.4937 0.1195
0.1717 2.36 60000 0.5127 0.1178
0.1692 2.75 70000 0.6040 0.1146
0.121 3.15 80000 0.5361 0.1130

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1
  • Datasets 2.18.1.dev0
  • Tokenizers 0.15.2