Edit model card

Mistral-7B-text-to-sql-without-flash-attention-2

This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.1 on the generator dataset.

with dataset b-mc2/sql-create-context

Model description

More information needed

Testing results

import torch

from peft import AutoPeftModelForCausalLM

from transformers import AutoTokenizer, pipeline

peft_model_id = "frankmorales2020/Mistral-7B-text-to-sql-without-flash-attention-2"

model = AutoPeftModelForCausalLM.from_pretrained( peft_model_id, device_map="auto", torch_dtype=torch.float16 )

tokenizer = AutoTokenizer.from_pretrained(peft_model_id)

pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)

CASE Number 1:

prompt='What was the first album Beyoncé released as a solo artist?'

prompt = f"Instruct: generate a SQL query.\n{prompt}\nOutput:\n" # for dataset b-mc2/sql-create-context

outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.eos_token_id)

print('Question: %s'%prompt)

print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")

Question: Instruct: generate a SQL query. What was the first album Beyoncé released as a solo artist? Output:

Generated Answer: SELECT first_album FROM table_name_82 WHERE solo_artist = "beyoncé"

CASE Number 2:

prompt='What was the first album Beyoncé released as a solo artist?'

prompt = f"Instruct: Answer the following question.\n{prompt}\nOutput:\n"

outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.eos_token_id)

print('Question: %s'%prompt)

print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")

Question: Instruct: Answer the following question. What was the first album Beyoncé released as a solo artist? Output:

Generated Answer: The first album Beyoncé released as a solo artist was "Dangerously in Love".

CASE Number 3:

prompt='What was the first album Beyoncé released as a solo artist?'

prompt = f"Instruct: generate a SQL query.\n{prompt}\n\n" # for dataset b-mc2/sql-create-context

outputs = pipe(prompt, max_new_tokens=1024, do_sample=True, temperature=0.9, top_k=50, top_p=0.1, eos_token_id=pipe.tokenizer.eos_token_id, pad_token_id=pipe.tokenizer.eos_token_id)

print('Question: %s'%prompt)

print(f"Generated Answer:\n{outputs[0]['generated_text'][len(prompt):].strip()}")

Question: Instruct: generate a SQL query. What was the first album Beyoncé released as a solo artist?

Generated Answer:

SELECT first_album FROM table_name_84 WHERE solo_artist = "beyoncé"


## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 3

### Training results



### Framework versions

- PEFT 0.10.0
- Transformers 4.39.1
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for frankmorales2020/Mistral-7B-text-to-sql-without-flash-attention-2

Adapter
(351)
this model