See axolotl config
axolotl version: 0.4.1
strict: false
base_model: microsoft/Phi-3.5-mini-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
chat_template: phi_3
datasets:
- path: fozziethebeat/alpaca_messages_classifier_2k_test
type: chat_template
split: train
chat_template: phi_3
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 8
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 5.0e-5
train_on_inputs: false
group_by_length: false
bfloat16: true
bf16: true
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 4
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
phi-3.5-alpaca-test-classifier
This model is a fine-tuned version of microsoft/Phi-3.5-mini-instruct on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1174
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
11.7206 | 0.0187 | 1 | 11.9120 |
9.4452 | 0.2617 | 14 | 9.1059 |
2.2582 | 0.5234 | 28 | 1.8353 |
0.1463 | 0.7850 | 42 | 0.1658 |
0.1315 | 1.0467 | 56 | 0.1291 |
0.1207 | 1.3084 | 70 | 0.1218 |
0.1238 | 1.5701 | 84 | 0.1196 |
0.1103 | 1.8318 | 98 | 0.1174 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for fozziethebeat/phi-3.5-alpaca-test-classifier
Base model
microsoft/Phi-3.5-mini-instruct