tinyllama-moe-base-mix-orpo

This model is a fine-tuned version of four-two-labs/tinyllama-moe-base on the see code dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1757
  • Rewards/chosen: -0.1708
  • Rewards/rejected: -0.1682
  • Rewards/accuracies: 0.5003
  • Rewards/margins: -0.0027
  • Logps/rejected: -1.6818
  • Logps/chosen: -1.7085
  • Logits/rejected: -2.6114
  • Logits/chosen: -2.6139
  • Nll Loss: 1.0859
  • Log Odds Ratio: -0.8989
  • Log Odds Chosen: -0.1073

Model description

More information needed

Training and evaluation data

from datasets import load_dataset
from datasets import interleave_datasets


def format_chat_template(row):
    for key in ['prompt', 'chosen', 'rejected']: 
        row[key] = tokenizer.apply_chat_template(row[key], tokenize=False)
        
    return row


dataset = (
    interleave_datasets([
        (
            interleave_datasets(
                load_dataset(
                    'four-two-labs/orpo-dpo-mix-40k-multilang-fixed',                 
                    token=hf_token,
                )
                .values()
            )
            .select_columns(['prompt', 'chosen', 'rejected'])
        ),
        (
            load_dataset(
                'four-two-labs/translations-5M-DPO',
                split='train', 
                token=hf_token,                
            )
            .shuffle(42)
            .select(range(250_000))
            .select_columns(['prompt', 'chosen', 'rejected'])
        ),
        (
            load_dataset(
                'four-two-labs/ultrafeedback_binarized-fixed', 
                split='train_prefs', 
                token=hf_token,
            )
            .select_columns(['prompt', 'chosen', 'rejected'])
        ),        
    ])
    .shuffle(seed=42)
    #.select(range(1000))
    .map(format_chat_template, num_proc=32)    
    .train_test_split(test_size=0.01)
)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 12
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 48
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen Nll Loss Log Odds Ratio Log Odds Chosen
1.1835 0.6001 2270 1.1764 -0.1711 -0.1684 0.4976 -0.0027 -1.6838 -1.7106 -2.6416 -2.6430 1.0866 -0.8991 -0.1073
1.1494 1.2002 4540 1.1757 -0.1709 -0.1682 0.5003 -0.0026 -1.6820 -1.7085 -2.5529 -2.5573 1.0860 -0.8988 -0.1070
1.233 1.8003 6810 1.1757 -0.1709 -0.1682 0.4993 -0.0027 -1.6819 -1.7086 -2.5859 -2.5892 1.0859 -0.8989 -0.1073
1.2344 2.4004 9080 1.1757 -0.1708 -0.1682 0.5003 -0.0027 -1.6818 -1.7085 -2.6114 -2.6139 1.0859 -0.8989 -0.1073

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
3.38B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for four-two-labs/tinyllama-moe-base-mix-orpo

Finetuned
(1)
this model