whisper-tiny-openslrdev

This model is a fine-tuned version of openai/whisper-tiny.en on the tedlium dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0820
  • Wer: 90.4154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0.06 20 3.7027 35.3291
3.9098 0.13 40 3.3264 35.0647
3.0852 0.19 60 2.9769 34.0871
2.2682 0.26 80 2.7802 31.6309
1.6662 0.32 100 2.5284 27.7728
1.6662 0.38 120 2.4481 24.3668
1.2505 0.45 140 2.4118 21.6532
1.0859 0.51 160 2.3687 20.9087
0.9491 0.58 180 2.1924 19.6493
0.8746 0.64 200 2.1752 22.1229
0.8746 0.7 220 2.2546 29.7245
0.8064 0.77 240 2.1611 39.6326
0.733 0.83 260 2.1281 55.7334
0.7135 0.89 280 2.0406 75.1705
0.6806 0.96 300 2.0820 90.4154

Framework versions

  • Transformers 4.39.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
121
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fontadie/whisper-tiny-openslrdev

Finetuned
(63)
this model

Evaluation results