metadata
base_model: facebook/wav2vec2
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: facebook/wav2vec2-base-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.4
facebook/wav2vec2-base-finetuned-gtzan
This model is a fine-tuned version of facebook/wav2vec2 on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 2.0140
- Accuracy: 0.4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.96 | 6 | 2.2871 | 0.195 |
2.2933 | 1.92 | 12 | 2.2658 | 0.18 |
2.2933 | 2.88 | 18 | 2.2214 | 0.275 |
2.2388 | 4.0 | 25 | 2.1885 | 0.29 |
2.1455 | 4.96 | 31 | 2.1246 | 0.38 |
2.1455 | 5.92 | 37 | 2.1139 | 0.35 |
2.0823 | 6.88 | 43 | 2.0462 | 0.36 |
2.0279 | 8.0 | 50 | 2.0282 | 0.405 |
2.0279 | 8.96 | 56 | 2.0133 | 0.405 |
1.9928 | 9.6 | 60 | 2.0140 | 0.4 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1