firdhokk's picture
add description datasets
3e83404 verified
---
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: speech-emotion-recognition-with-openai-whisper-large-v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# speech-emotion-recognition-with-openai-whisper-large-v3
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co./openai/whisper-large-v3) on the [RAVDESS](https://zenodo.org/records/1188976#.XsAXemgzaUk), [SAVEE](https://www.kaggle.com/datasets/ejlok1/surrey-audiovisual-expressed-emotion-savee/data), [TESS](https://tspace.library.utoronto.ca/handle/1807/24487), and [URDU](https://www.kaggle.com/datasets/bitlord/urdu-language-speech-dataset) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5008
- Accuracy: 0.9199
- Precision: 0.9230
- Recall: 0.9199
- F1: 0.9198
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 5
- total_train_batch_size: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.4948 | 0.9995 | 394 | 0.4911 | 0.8286 | 0.8449 | 0.8286 | 0.8302 |
| 0.6271 | 1.9990 | 788 | 0.5307 | 0.8225 | 0.8559 | 0.8225 | 0.8277 |
| 0.2364 | 2.9985 | 1182 | 0.5076 | 0.8692 | 0.8727 | 0.8692 | 0.8684 |
| 0.0156 | 3.9980 | 1576 | 0.5669 | 0.8732 | 0.8868 | 0.8732 | 0.8745 |
| 0.2305 | 5.0 | 1971 | 0.4578 | 0.9108 | 0.9142 | 0.9108 | 0.9114 |
| 0.0112 | 5.9995 | 2365 | 0.4701 | 0.9108 | 0.9159 | 0.9108 | 0.9114 |
| 0.0013 | 6.9990 | 2759 | 0.5232 | 0.9138 | 0.9204 | 0.9138 | 0.9137 |
| 0.1894 | 7.9985 | 3153 | 0.5008 | 0.9199 | 0.9230 | 0.9199 | 0.9198 |
| 0.0877 | 8.9980 | 3547 | 0.5517 | 0.9138 | 0.9152 | 0.9138 | 0.9138 |
| 0.1471 | 10.0 | 3942 | 0.5856 | 0.8895 | 0.9002 | 0.8895 | 0.8915 |
| 0.0026 | 10.9995 | 4336 | 0.8334 | 0.8773 | 0.8949 | 0.8773 | 0.8770 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.0
- Tokenizers 0.19.1