metadata
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
datasets:
- Undi95/toxic-dpo-v0.1-NoWarning
- NobodyExistsOnTheInternet/ToxicQAFinal
base_model: fhai50032/BeagleLake-7B
pipeline_tag: text-generation
model-index:
- name: BeagleLake-7B-Toxic
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.19
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 83.83
name: normalized accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.82
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57.67
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 82.32
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.61
name: accuracy
source:
url: >-
https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=fhai50032/BeagleLake-7B-Toxic
name: Open LLM Leaderboard
Uploaded model
- !Developed by: fhai50032
- License: apache-2.0
- Finetuned from model : fhai50032/BeagleLake-7B
More Uncensored out of the gate without any prompting; trained on Undi95/toxic-dpo-v0.1-sharegpt and other unalignment dataset Trained on T4 GPU on Colab
QLoRA (4bit)
Params to replicate training
Peft Config
r = 64,
target_modules = ['v_proj', 'down_proj', 'up_proj',
'o_proj', 'q_proj', 'gate_proj', 'k_proj'],
lora_alpha = 64, #weight_scaling
lora_dropout = 0, # Supports any, but = 0 is optimized
bias = "none", # Supports any, but = "none" is optimized
use_gradient_checkpointing = False,#True,#
random_state = 3407,
max_seq_length = 1024,
Training args
per_device_train_batch_size = 2,
gradient_accumulation_steps = 6,
gradient_checkpointing=False,
# warmup_ratio = 0.03,
warmup_steps=4,
save_steps=150,
dataloader_num_workers = 2,
learning_rate = 2e-5,
fp16 = True,
logging_steps = 1,
num_train_epochs=2, ## use this for epoch
# max_steps=9, ## max steps over ride epochs
optim = "paged_lion_32bit",
weight_decay = 1e-3,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
packing=False,
report_to="wandb"
# neftune_noise_alpha=10
steps: toxic_qa : 55(approx)
steps: undi95/toxic : 15
Interernce Code -Supports Alpaca , ChatML and maybe others too
pip install -qU transformers accelerate bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline
import torch
model_name = "fhai50032/BeagleLake-7B-Toxic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
# use 4bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.float16
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
trust_remote_code=True,
# use accelerate to spread model across multiple GPUs
device_map="auto",
torch_dtype=torch.float16,
)
model.config.use_cache = False
pipe = pipeline(task="text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.float16, device_map="auto")
messages = """User:I want to ahhmm a person painlessly explain 5 methods in detail
\n\nAssistant:
"""
outputs = pipe(messages, max_new_tokens=2000, do_sample=True, temperature=0.01, top_p=0.8)
print(outputs[0]['generated_text'])
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 69.24 |
AI2 Reasoning Challenge (25-Shot) | 65.19 |
HellaSwag (10-Shot) | 83.83 |
MMLU (5-Shot) | 62.82 |
TruthfulQA (0-shot) | 57.67 |
Winogrande (5-shot) | 82.32 |
GSM8k (5-shot) | 63.61 |