metadata
base_model: rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
datasets:
- rhaymison/superset
language:
- pt
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- portuguese
- phi
- text-generation-inference
- llama-cpp
- gguf-my-repo
model-index:
- name: portuguese-Phi3-Tom-Cat-128k-instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 51.15
name: accuracy
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 42.56
name: accuracy
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 39.86
name: accuracy
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 88.86
name: f1-macro
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 68
name: pearson
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 45.16
name: f1-macro
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 85.92
name: f1-macro
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 65.76
name: f1-macro
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 53.32
name: f1-macro
source:
url: >-
https://huggingface.co./spaces/eduagarcia/open_pt_llm_leaderboard?query=rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
name: Open Portuguese LLM Leaderboard
fernandovmacedo/portuguese-Phi3-Tom-Cat-128k-instruct-Q4_K_M-GGUF
This model was converted to GGUF format from rhaymison/portuguese-Phi3-Tom-Cat-128k-instruct
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo fernandovmacedo/portuguese-Phi3-Tom-Cat-128k-instruct-Q4_K_M-GGUF --hf-file portuguese-phi3-tom-cat-128k-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo fernandovmacedo/portuguese-Phi3-Tom-Cat-128k-instruct-Q4_K_M-GGUF --hf-file portuguese-phi3-tom-cat-128k-instruct-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo fernandovmacedo/portuguese-Phi3-Tom-Cat-128k-instruct-Q4_K_M-GGUF --hf-file portuguese-phi3-tom-cat-128k-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo fernandovmacedo/portuguese-Phi3-Tom-Cat-128k-instruct-Q4_K_M-GGUF --hf-file portuguese-phi3-tom-cat-128k-instruct-q4_k_m.gguf -c 2048