metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: osc-01-bert-finetuned
results: []
osc-01-bert-finetuned
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3193
- Validation Loss: 0.7572
- Train Precision: 0.6026
- Epoch: 6
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': False, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 110, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Precision | Epoch |
---|---|---|---|
0.6873 | 0.6937 | 0.5147 | 0 |
0.6544 | 0.6854 | 0.5 | 1 |
0.6127 | 0.7071 | 0.5242 | 2 |
0.5651 | 0.6813 | 0.5591 | 3 |
0.5015 | 0.7012 | 0.5747 | 4 |
0.4006 | 0.7292 | 0.5882 | 5 |
0.3193 | 0.7572 | 0.6026 | 6 |
Framework versions
- Transformers 4.31.0
- TensorFlow 2.13.0
- Datasets 2.14.4
- Tokenizers 0.13.3