metadata
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: >-
The sales contracts for Israel contain formulas that generally reflect an
initial base price subject to price indexation, Brent-linked or other,
over the life of the contract.
sentences:
- What was the change in HP's net deferred tax assets from 2022 to 2023?
- What are the pricing mechanisms for crude oil sales contracts in Israel?
- >-
What was the total net income tax benefit HP received related to foreign
tax audit matters?
- source_sentence: >-
The FCA imposes severe penalties for the knowing and improper retention of
overpayments from government programs. In addition, the defendant must
follow certain notification and repayment processes within 60 days of
identifying and quantifying an overpayment.
sentences:
- What does Note 21 pertain to in this report?
- >-
What types of penalties does the FCA impose for the knowing and improper
retention of overpayments from government payors?
- >-
What impact did discrete tax items have on the tax provision in 2023
compared to 2022?
- source_sentence: >-
The expected long-term rate of return is evaluated on an annual basis. We
consider a number of factors when setting assumptions with respect to the
long-term rate of return, including current and expected asset allocation
and historical and expected returns on the plan asset categories. Actual
asset allocations are regularly reviewed and periodically rebalanced to
the targeted allocations when considered appropriate.
sentences:
- How is the expected long-term rate of return on plan assets determined?
- >-
What is the accumulated benefit obligation for AT&T's pension plans as
of December 31, 2023?
- What is the management philosophy of Johnson & Johnson known as?
- source_sentence: >-
The functional currency of our foreign entities is the currency of the
primary economic environment in which the entity operates.
sentences:
- >-
By what percent did Other Income (Expense) change in 2023 compared to
2022?
- >-
What are the Canadian class actions against Equifax seeking in relation
to the 2017 cybersecurity incident?
- What is the functional currency for a company's foreign entities?
- source_sentence: >-
Our products compete with other commercially available products based
primarily on efficacy, safety, tolerability, acceptance by doctors, ease
of patient compliance, ease of use, price, insurance and other
reimbursement coverage, distribution and marketing.
sentences:
- >-
What are the main factors influencing competition for the company's
products?
- >-
What was the impact of restructuring charges in 2022 on the company and
what changes occurred in 2023?
- >-
What are the penalties for non-compliance with Brazil's data protection
laws?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6985714285714286
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.83
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.88
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9257142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6985714285714286
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27666666666666667
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.176
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09257142857142854
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6985714285714286
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.83
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.88
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9257142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8141629079228132
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7782318594104309
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7807867705374557
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8328571428571429
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8857142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9228571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2776190476190476
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17714285714285713
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09228571428571428
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8328571428571429
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8857142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9228571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8133531244983723
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7781366213151925
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7808747462599953
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.84
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8714285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17428571428571427
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.84
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8714285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8077154994184018
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7749937641723353
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7785241448057054
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6942857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8557142857142858
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6942857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17114285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6942857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8557142857142858
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7990640908671799
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7658554421768706
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7697199109144424
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6614285714285715
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7842857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8271428571428572
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8885714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6614285714285715
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26142857142857145
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1654285714285714
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08885714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6614285714285715
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7842857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8271428571428572
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8885714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7730930913085324
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7365589569160996
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7404183138657333
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("felipehsilveira/bge-base-financial-matryoshka")
sentences = [
'Our products compete with other commercially available products based primarily on efficacy, safety, tolerability, acceptance by doctors, ease of patient compliance, ease of use, price, insurance and other reimbursement coverage, distribution and marketing.',
"What are the main factors influencing competition for the company's products?",
'What was the impact of restructuring charges in 2022 on the company and what changes occurred in 2023?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6986 |
cosine_accuracy@3 |
0.83 |
cosine_accuracy@5 |
0.88 |
cosine_accuracy@10 |
0.9257 |
cosine_precision@1 |
0.6986 |
cosine_precision@3 |
0.2767 |
cosine_precision@5 |
0.176 |
cosine_precision@10 |
0.0926 |
cosine_recall@1 |
0.6986 |
cosine_recall@3 |
0.83 |
cosine_recall@5 |
0.88 |
cosine_recall@10 |
0.9257 |
cosine_ndcg@10 |
0.8142 |
cosine_mrr@10 |
0.7782 |
cosine_map@100 |
0.7808 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7014 |
cosine_accuracy@3 |
0.8329 |
cosine_accuracy@5 |
0.8857 |
cosine_accuracy@10 |
0.9229 |
cosine_precision@1 |
0.7014 |
cosine_precision@3 |
0.2776 |
cosine_precision@5 |
0.1771 |
cosine_precision@10 |
0.0923 |
cosine_recall@1 |
0.7014 |
cosine_recall@3 |
0.8329 |
cosine_recall@5 |
0.8857 |
cosine_recall@10 |
0.9229 |
cosine_ndcg@10 |
0.8134 |
cosine_mrr@10 |
0.7781 |
cosine_map@100 |
0.7809 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7 |
cosine_accuracy@3 |
0.84 |
cosine_accuracy@5 |
0.8714 |
cosine_accuracy@10 |
0.9086 |
cosine_precision@1 |
0.7 |
cosine_precision@3 |
0.28 |
cosine_precision@5 |
0.1743 |
cosine_precision@10 |
0.0909 |
cosine_recall@1 |
0.7 |
cosine_recall@3 |
0.84 |
cosine_recall@5 |
0.8714 |
cosine_recall@10 |
0.9086 |
cosine_ndcg@10 |
0.8077 |
cosine_mrr@10 |
0.775 |
cosine_map@100 |
0.7785 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6943 |
cosine_accuracy@3 |
0.82 |
cosine_accuracy@5 |
0.8557 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.6943 |
cosine_precision@3 |
0.2733 |
cosine_precision@5 |
0.1711 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.6943 |
cosine_recall@3 |
0.82 |
cosine_recall@5 |
0.8557 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.7991 |
cosine_mrr@10 |
0.7659 |
cosine_map@100 |
0.7697 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6614 |
cosine_accuracy@3 |
0.7843 |
cosine_accuracy@5 |
0.8271 |
cosine_accuracy@10 |
0.8886 |
cosine_precision@1 |
0.6614 |
cosine_precision@3 |
0.2614 |
cosine_precision@5 |
0.1654 |
cosine_precision@10 |
0.0889 |
cosine_recall@1 |
0.6614 |
cosine_recall@3 |
0.7843 |
cosine_recall@5 |
0.8271 |
cosine_recall@10 |
0.8886 |
cosine_ndcg@10 |
0.7731 |
cosine_mrr@10 |
0.7366 |
cosine_map@100 |
0.7404 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 45.44 tokens
- max: 301 tokens
|
- min: 7 tokens
- mean: 20.3 tokens
- max: 51 tokens
|
- Samples:
positive |
anchor |
The Centers for Medicare & Medicaid Services issued a final rule in October 2023 for the calendar year 2024, estimating a productivity-adjusted market basket increase of 2.1% in average reimbursement to ESRD facilities. |
What is the projected impact on average reimbursement to ESRD facilities in 2024 due to the final rule issued by CMS? |
Company Adjusted EBIT Margin is derived by dividing the Company adjusted EBIT by Company revenue, which is a non-GAAP measure useful for evaluating the company's operating results. |
How is the Company Adjusted EBIT Margin calculated? |
The provision for credit losses was $4 million for the year ended December 31, 202 serviLists of account holders responsible for and the state of the economy, our credit standards, our risk assessments, and the judgment of our employees responsible for granting credit. |
What factors influence the provision for credit losses at Las Vegas Sands Corp.? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
eval_use_gather_object
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.5176 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7500 |
0.7642 |
0.7680 |
0.7079 |
0.7708 |
1.6244 |
20 |
0.6868 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7657 |
0.7746 |
0.7784 |
0.7323 |
0.7816 |
2.4365 |
30 |
0.4738 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7691 |
0.7780 |
0.7790 |
0.7402 |
0.7796 |
3.2487 |
40 |
0.3934 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7697 |
0.7785 |
0.7809 |
0.7404 |
0.7808 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}