Llamacpp Quantizations of Meta-Llama-3.1-8B
Using llama.cpp release b3583 for quantization.
Original model: https://huggingface.co./google/gemma-7b
Download a file (not the whole branch) from below:
Filename | Quant type | File Size | Perplexity (wikitext-2-raw-v1.test) |
---|---|---|---|
gemma-7b.BF16.gguf | BF16 | 17.1 GB | 6.9857 +/- 0.04411 |
gemma-7b-Q8_0.gguf | Q8_0 | 9.08 GB | 7.0373 +/- 0.04456 |
gemma-7b-Q6_K.gguf | Q6_K | 7.01 GB | 7.3858 +/- 0.04762 |
gemma-7b-Q5_K_M.gguf | Q5_K_M | 6.14 GB | 7.4227 +/- 0.04781 |
gemma-7b-Q5_K_S.gguf | Q5_K_S | 5.98 GB | 7.5232 +/- 0.04857 |
gemma-7b-Q4_K_M.gguf | Q4_K_M | 5.33 GB | 7.5800 +/- 0.04918 |
gemma-7b-Q4_K_S.gguf | Q4_K_S | 5.05 GB | 7.9673 +/- 0.05225 |
gemma-7b-Q3_K_L.gguf | Q3_K_L | 4.71 GB | 7.9586 +/- 0.05186 |
gemma-7b-Q3_K_M.gguf | Q3_K_M | 4.37 GB | 8.4077 +/- 0.05545 |
gemma-7b-Q3_K_S.gguf | Q3_K_S | 3.98 GB | 102.6126 +/- 1.62310 |
gemma-7b-Q2_K.gguf | Q2_K | 3.48 GB | 3970.5385 +/- 102.46527 |
Downloading using huggingface-cli
First, make sure you have hugginface-cli installed:
pip install -U "huggingface_hub[cli]"
Then, you can target the specific file you want:
huggingface-cli download fedric95/gemma-7b-GGUF --include "gemma-7b-Q4_K_M.gguf" --local-dir ./
If the model is bigger than 50GB, it will have been split into multiple files. In order to download them all to a local folder, run:
huggingface-cli download fedric95/gemma-7b-GGUF --include "gemma-7b-Q8_0.gguf/*" --local-dir gemma-7b-Q8_0
You can either specify a new local-dir (gemma-7b-Q8_0) or download them all in place (./)
Reproducibility
https://github.com/ggerganov/llama.cpp/discussions/9020#discussioncomment-10335638
- Downloads last month
- 322
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for fedric95/gemma-7b-GGUF
Base model
google/gemma-7b