File size: 41,103 Bytes
34c8fdb 22dbe96 34c8fdb d23f4c9 34c8fdb d0e0652 d23f4c9 d0e0652 42c70ab d0e0652 34c8fdb d23f4c9 34c8fdb 42c70ab 34c8fdb d23f4c9 34c8fdb 42c70ab 34c8fdb d0e0652 d23f4c9 d0e0652 42c70ab d0e0652 d23f4c9 d0e0652 42c70ab d0e0652 42c70ab d0e0652 42c70ab d0e0652 42c70ab d0e0652 d23f4c9 d0e0652 42c70ab d0e0652 d23f4c9 42c70ab d23f4c9 42c70ab d23f4c9 42c70ab d23f4c9 42c70ab d23f4c9 42c70ab d0e0652 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb d23f4c9 34c8fdb 42c70ab 34c8fdb 681f1c8 34c8fdb d0e0652 34c8fdb d0e0652 34c8fdb d0e0652 34c8fdb d0e0652 34c8fdb d0e0652 34c8fdb d0e0652 960d377 d0e0652 34c8fdb d0e0652 960d377 d0e0652 960d377 34c8fdb d0e0652 34c8fdb d0e0652 960d377 42c70ab d0e0652 42c70ab d0e0652 42c70ab d0e0652 34c8fdb 960d377 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb 42c70ab 34c8fdb d0e0652 22dbe96 d0e0652 22dbe96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 |
import json
inset_th=1
#_config=json.load(open("config.json","r"))
_config={
"sug_based_list":["dispute","plaintiff"],
"sug_pool_list":["corpus3835","2022~2023"],
"embedder_list":["ftlf","ftrob"],
"based_index":0,
"pool_index":1,
"emb_index":1,
"sug_th":20,
"cluster_epsilon":0.67,
"similiar_trace_back_th":0.98,
"back_ground_RGB":[217, 225, 242]
}
emb_dim_lst=[768,1024]
bilstm_len_lst=[19,13]
cnn_len_lst=[32,18]
emb_dim=emb_dim_lst[_config["emb_index"]]
bilstm_len=bilstm_len_lst[_config["based_index"]]
cnn_len=cnn_len_lst[_config["based_index"]]
sug_type=_config["sug_based_list"][_config["based_index"]]
pool_type=_config["sug_pool_list"][_config["pool_index"]]
emb_type=_config["embedder_list"][_config["emb_index"]]
sug_th=_config["sug_th"]
clust_th=_config["cluster_epsilon"]
_th=_config["similiar_trace_back_th"]
bg_rgb=(_config["back_ground_RGB"][0],_config["back_ground_RGB"][1],_config["back_ground_RGB"][2])
import os,sys
#_gpu=(1==1)
#if not _gpu:
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
import cv2#opencv-python 4.6.0.66
import colorama
from colorama import Fore,Style,Back
import json
import numpy as np
from numpy.linalg import norm
from sentence_transformers import SentenceTransformer
from tqdm import tqdm
import tensorflow as tf
from tensorflow.keras.models import load_model
#---------------------------------------
def logistic(x_r,y_r,x_e,_proba=True):
from sklearn import linear_model
from sklearn.inspection import permutation_importance
model=linear_model.LogisticRegression(max_iter=100000)
model.fit(x_r,y_r)
p_e=model.predict(x_e)
prob_e=model.predict_proba(x_e)
prob_sum=[i[1] for i in prob_e]
return (prob_sum if _proba else p_e)
def cos_sim(a,b):
return np.dot(a,b)/(norm(a)*norm(b))
def replace_all(t,rp_lst,k,_type=0):
temp=t
for _e in rp_lst:
if _type==-1:
temp=temp.replace(_e,k+_e)
elif _type==1:
temp=temp.replace(_e,_e+k)
else:
temp=temp.replace(_e,k)
return temp
def jl(file_path):
with open(file_path, "r", encoding="utf8") as json_file:
json_list = list(json_file)
return [json.loads(json_str) for json_str in json_list]
def lst_2_dict(lst):
_dict={i["filename"]:[i["p_point"],i["d_point"],i["Controversy"]] for i in lst}
return _dict
def clust_2_dict(clust):
_dict={}
ct=0
for i in clust:
if len(clust[i])==1:
_dict[clust[i][0]]=-1
else:
ct+=1
for _e in clust[i]:
_dict[_e]=ct
return _dict
def clust_label(clust):
_dict={}
for i in clust:
for _e in clust[i]:
if len(clust[i])>1:
_dict[_e]=i
else:
_dict[_e]='-1'
return _dict
#-----------------------------
def clust_core(clust,vec_lst,id_lst,_type="mean"):
_dict={}
for i in clust:
if _type=="head":
_dict[i]=vec_lst[id_lst.index(clust[i][0])]
elif _type=="central":
tp_lst=np.array([vec_lst[id_lst.index(_e)] for _e in clust[i]])
temp=np.average(tp_lst, axis=0)
cs_lst=[[cos_sim(_e,temp),list(_e)] for _e in tp_lst]
_dict[i]=max(cs_lst)[-1]
else:#_type=="mean"
tp_lst=np.array([vec_lst[id_lst.index(_e)] for _e in clust[i]])
_dict[i]=np.average(tp_lst, axis=0)
return _dict
def clust_search(core_dict,target,clust_th=0.65):
temp=max([[cos_sim(target,core_dict[i]),i] for i in core_dict])
ot_,label_=temp
return label_ if ot_>=clust_th else '-1'
def vec2img(vec_lst1,clust_lst1,vec_lst2,clust_lst2,r):
tp_lst1=[[vec_lst1[i],clust_lst1[i]] for i in range(len(clust_lst1))]
tp_lst2=[[vec_lst2[i],clust_lst2[i]] for i in range(len(clust_lst2))]
lst1=sorted(tp_lst1,key=lambda x:x[1])
lst2=sorted(tp_lst2,key=lambda x:x[1])
m_lst=lst1+lst2
_img=[[255 for _ee in range(len(m_lst))] for _e in range(len(m_lst))]
for i in range(len(m_lst)):
for j in range(len(m_lst)):
if i<j:
temp=cos_sim(m_lst[i][0],m_lst[j][0])
_tp=(temp-r)/(1-r)*128+127 if temp>r else temp/r*128
_tp=int(_tp-1)
_img[i][j]=_tp
_img[j][i]=_tp
return _img
def img_resize(_img,_max_size):
return cv2.resize(np.array(_img).astype('float32'), (_max_size, _max_size), interpolation=cv2.INTER_AREA).tolist()
def cnn_load(_device="/gpu:0"):
global cnn_model
with tf.device(_device):
cnn_model=load_model("./models/"+sug_type+"_"+emb_type+"_cnn.dat")
cnn_model.load_weights("./models/"+sug_type+"_"+emb_type+"_cnn_best.hdf5")
def bilstm_load(_device="/gpu:0"):
global bilstm_model
with tf.device(_device):
bilstm_model=load_model("./models/"+sug_type+"_"+emb_type+"_sa.dat")
bilstm_model.load_weights("./models/"+sug_type+"_"+emb_type+"_sa_best.hdf5")
#---------------------------------------
_tranpose=(1==1)
from colorama import Fore,Style,Back
from pretty_html_table import build_table
import pandas as pd
def html_hl(lst):
#font_path = "./font/TaipeiSansTCBeta-Regular.ttf"
#font = ImageFont.truetype(font_path, font_size)
tp_lst=[]
for i in lst:
temp="<mark style=\"background:"+i["background_color"]+";color:"+i["font_color"]+"\">"+i["content"]+"</mark>"
tp_lst.append(temp)
return "".join(tp_lst)
def ansi_to_html_dis(_f,file_path,_tranpose=True):
if _tranpose:
_dict={"item":["plaintiff","defendant","dispute","score"],_f["target"]+"(target)":["plaintiff_anchor2","defendant_anchor2","dispute_anchor2",""],_f["case_id"]:["plaintiff_anchor1","defendant_anchor1","dispute_anchor1","score_anchor"]}
else:
_dict={"case_name":[_f["case_id"],_f["target"]+"(target)"],"plaintiff":["plaintiff_anchor1","plaintiff_anchor2"],"defendant":["defendant_anchor1","defendant_anchor2"],"dispute":["dispute_anchor1","dispute_anchor2"],"score":["","score_anchor"]}
p1=html_hl(_f["plaintiff_case1"])
p2=html_hl(_f["plaintiff_case2"])
d1=html_hl(_f["defendant_case1"])
d2=html_hl(_f["defendant_case2"])
dis1=html_hl(_f["dispute_case1"])
dis2=html_hl(_f["dispute_case2"])
score_="\n<mark style=\"background:#d9e1f2;color:"+("green" if _f["ensemble_pred"]>=0.75 else "yellow" if _f["ensemble_pred"]>=0.5 else "red")+"\">"+str(_f["ensemble_pred"])+"</mark>"
#score_="<mark style=\"color:>"++"\">"+str(_f["ensemble_pred"])+"</mark>"
df=pd.DataFrame(_dict)
html_table_blue_light = build_table(df, 'blue_light')
##print(type(html_table_blue_light))
injection="<meta charset=\"UTF-8\">"
#"<td style = \"background-color: #D9E1F2;font-family: Century Gothic, sans-serif;font-size: medium;text-align: left;padding: 0px 20px 0px 0px;width: auto\">"
html_table_blue_light=html_table_blue_light[:html_table_blue_light.find("<thead>")+7]+injection+html_table_blue_light[html_table_blue_light.find("<thead>")+7:]
html_table_blue_light=html_table_blue_light.replace("plaintiff_anchor1",p1).replace("plaintiff_anchor2",p2)\
.replace("defendant_anchor1",d1).replace("defendant_anchor2",d2)\
.replace("dispute_anchor1",dis1).replace("dispute_anchor2",dis2)\
.replace("score_anchor",score_)
with open(file_path, 'w',) as f:
f.write(html_table_blue_light)
return html_table_blue_light
def ansi_to_html(_f,file_path,_tranpose=True):
if _tranpose:
_dict={"item":["plaintiff","p_point","score"],_f["target"]+"(target)":["plaintiff_anchor2","p_point_anchor2",""],_f["case_id"]:["plaintiff_anchor1","p_point_anchor1","score_anchor"]}
else:
_dict={"case_name":[_f["case_id"],_f["target"]+"(target)"],"plaintiff":["plaintiff_anchor1","plaintiff_anchor2"],"p_point":["p_point_anchor1","p_point_anchor2"],"score":["","score_anchor"]}
p1=html_hl(_f["plaintiff_case1"])
p2=html_hl(_f["plaintiff_case2"])
p_point1=html_hl(_f["p_point_case1"])
p_point2=html_hl(_f["p_point_case2"])
score_="\n<mark style=\"background:#d9e1f2;color:"+("green" if _f["ensemble_pred"]>=0.75 else "yellow" if _f["ensemble_pred"]>=0.5 else "red")+"\">"+str(_f["ensemble_pred"])+"</mark>"
#score_="<mark style=\"color:>"++"\">"+str(_f["ensemble_pred"])+"</mark>"
df=pd.DataFrame(_dict)
html_table_blue_light = build_table(df, 'blue_light')
##print(type(html_table_blue_light))
injection="<meta charset=\"UTF-8\">"
#"<td style = \"background-color: #D9E1F2;font-family: Century Gothic, sans-serif;font-size: medium;text-align: left;padding: 0px 20px 0px 0px;width: auto\">"
html_table_blue_light=html_table_blue_light[:html_table_blue_light.find("<thead>")+7]+injection+html_table_blue_light[html_table_blue_light.find("<thead>")+7:]
html_table_blue_light=html_table_blue_light.replace("plaintiff_anchor1",p1).replace("plaintiff_anchor2",p2)\
.replace("p_point_anchor1",p_point1).replace("p_point_anchor2",p_point2)\
.replace("score_anchor",score_)
with open(file_path, 'w',) as f:
f.write(html_table_blue_light)
return html_table_blue_light
#---------------------------------------
from PIL import Image, ImageDraw, ImageFont
# Dictionary mapping colorama codes to RGB colors
ANSI_BG_COLORS = {
Fore.BLACK: (0, 0, 0),
Fore.RED: (255, 0, 0),
Fore.GREEN: (30, 255, 30),
Fore.YELLOW: (255, 255, 0),
Fore.BLUE: (0, 0, 255),
Fore.MAGENTA: (255, 0, 255),
Fore.CYAN: (0, 255, 255),
Fore.WHITE: (255, 255, 255),
Fore.RESET: (0, 0, 0), # Reset to black
Back.BLACK: (0, 0, 0),
Back.RED: (255, 0, 0),
Back.GREEN: (0, 255, 0),
Back.YELLOW: (255, 255, 0),
Back.BLUE: (0, 0, 255),
Back.MAGENTA: (255, 0, 255),
Back.CYAN: (0, 255, 255),
Back.WHITE: (255, 255, 255),
'\033[0m': bg_rgb # Reset to White background
}
ANSI_COLORS={_e:"#"+str(hex(1*256*256*256+ANSI_BG_COLORS[_e][0]*256*256+ANSI_BG_COLORS[_e][1]*256+ANSI_BG_COLORS[_e][2]))[3:] for _e in ANSI_BG_COLORS}
def ansi_to_image(ansi_text, font_size=20, image_path="./test.png"):
global bg_rgb
font_path = "./font/TaipeiSansTCBeta-Regular.ttf"
font = ImageFont.truetype(font_path, font_size)
# Split the text into lines
lines = ansi_text.split('\n')
# Calculate image size
max_width = 0
total_height = 0
line_heights = []
for line in lines:
text_width, text_height = font.getsize(line)
max_width = max(max_width, text_width)
total_height += text_height
line_heights.append(text_height)
# Create a blank image
image = Image.new('RGB', (max_width, total_height), color=bg_rgb)
draw = ImageDraw.Draw(image)
y = 0
for line, line_height in zip(lines, line_heights):
x = 0
segments = line.split('\033')
anchor_bg_color=(255,255,255)
for segment in segments:
##print(segment)
if segment and segment[-1]=='m':
code= segment[:-1]
anchor_bg_color = ANSI_BG_COLORS.get(f'\033{code}m', anchor_bg_color)
#text_width, text_height = draw.textsize(text, font=font)
#draw.rectangle([x, y, x + text_width, y + line_height], fill=(255, 255, 255))
#draw.text((x, y), text, font=font, fill=anchor_bg_color)
x += 0
if 'm' in segment:
code, text = segment.split('m', 1)
font_color = ANSI_BG_COLORS.get(f'\033{code}m', anchor_bg_color)
text_width, text_height = draw.textsize(text, font=font)
draw.rectangle([x, y, x + text_width, y + line_height], anchor_bg_color)
draw.text((x, y), text, font=font, fill=font_color)
x += text_width
else:
text = segment
text_width, text_height = draw.textsize(text, font=font)
draw.text((x, y), text, font=font, fill=(255,255,255))
x += text_width
y += line_height
# Save the image
image.save(image_path)
return image_path
# 示例ANSI文本
#ansi_content = '\033[44m555\033[0m\n111\033[41m555\033[0m'
# 將ANSI轉換為圖像
#image_path = ansi_to_image(ansi_content)
#
#---------------------------------------
def suggesting_dis(the_pool,target_name,case_dict):
global ANSI_COLORS,_th,c_th,sug_th,corpus_dict,corpus_pd_f,vec_lst,id_lst,sen_lst,corpus_clust_label,_cluster_core_dict,_embedder
global bilstm_len,cnn_len,emb_dim,inset_th,clust_th
lst_2=[_e for _e in case_dict["dispute"]][:bilstm_len]
#for _e in lst2:
# temp=_embedder.encode(_e)
# vec_lst_2.append()
vec_lst_2=[_embedder.encode(_e) for _e in lst_2]
clst_2=[clust_search(_cluster_core_dict,_e,clust_th) for _e in vec_lst_2]
plst_2=replace_all("".join(case_dict["plaintiff"]),key_lst,sp_key,1).split(sp_key)
dlst_2=replace_all("".join(case_dict["defendant"]),key_lst,sp_key,1).split(sp_key)
v_plst_2=[_embedder.encode(_e) for _e in plst_2]
v_dlst_2=[_embedder.encode(_e) for _e in dlst_2]
#print(clst_2)
rt_lst=[]
for i in tqdm(the_pool):
if target_name==i:
continue
lst_1=[_e for _e in corpus_dict[i]]
id_lst_1=[id_lst[sen_lst.index(_e)] for _e in lst_1]
vec_lst_1=[vec_lst[sen_lst.index(_e)] for _e in lst_1]#[_embedder.encode(_e) for _e in lst_1]
clst_1=[corpus_clust_label[_e] for _e in id_lst_1]#[clust_search(_cluster_core_dict,_e,0.68) for _e in vec_lst_1]
##print(clst_1)
inset=sorted([_e for _e in set(clst_1)&set(clst_2) if _e!=-1])
temp_ot={}
if len(inset)>=max(1,inset_th):
temp_ot["target"]=target_name
temp_ot["inset"]=inset
##print(len(inset))
_img=img_resize(vec2img(vec_lst_1,clst_1,vec_lst_2,clst_2,clust_th),cnn_len)
cnn_pred=cnn_model.predict(np.array([_img])/255)
_con1,_con2=[],[]
for tp_i in range(bilstm_len):
if len(lst_1)>tp_i:
_con1.append(vec_lst_1[tp_i])
else:
_con1.append([0]*emb_dim)
for tp_i in range(bilstm_len):
if len(lst_2)>tp_i:
_con2.append(vec_lst_2[tp_i])
else:
_con2.append([0]*emb_dim)
_con1=np.array([_con1])
_con2=np.array([_con2])
#print(len(_con1),len(_con2),len(_con2[0]))
#_con1=list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_1))) if len(lst_1)<=bilstm_len else list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))[:bilstm_len*emb_dim]
#_con2=list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_2))) if len(lst_2)<=bilstm_len else list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))[:bilstm_len*emb_dim]
bilstm_pred=bilstm_model.predict([_con1,_con2])
temp_ot["cnn_pred"]=float(cnn_pred[0][0])
temp_ot["bilstm_pred"]=float(bilstm_pred[0][0])
##print(cnn_pred)
##print(bilstm_pred)
x_e=[[bilstm_pred[0][0],cnn_pred[0][0]]]
if bilstm_pred[0][0]>=0.75:
ensemble_pred=logistic(x_r,y_r,x_e)
temp_ot["ensemble_pred"]=float(ensemble_pred[0])
##print(ensemble_pred)
pre_lst_1=[[color_lst[inset.index(clst_1[_e]) % len(color_lst)],Fore.WHITE,lst_1[_e],Style.RESET_ALL] if clst_1[_e] in inset else [Style.RESET_ALL,lst_1[_e]] for _e in range(len(lst_1))]
pre_lst_2=[[color_lst[inset.index(clst_2[_e]) % len(color_lst)],Fore.WHITE,lst_2[_e],Style.RESET_ALL] if clst_2[_e] in inset else [Style.RESET_ALL,lst_2[_e]] for _e in range(len(lst_2))]
vlst_1=[[vec_lst_1[_e],pre_lst_1[_e][0]] for _e in range(len(pre_lst_1)) if len(pre_lst_1[_e])==4]
vlst_2=[[vec_lst_2[_e],pre_lst_2[_e][0]] for _e in range(len(pre_lst_2)) if len(pre_lst_2[_e])==4]
##print(lst_1)
plst_1=replace_all("".join(corpus_pd_f[i.replace("_",",")][0]),key_lst,sp_key,1).split(sp_key)
dlst_1=replace_all("".join(corpus_pd_f[i.replace("_",",")][1]),key_lst,sp_key,1).split(sp_key)
v_plst_1=[_embedder.encode(_e) for _e in plst_1]
v_dlst_1=[_embedder.encode(_e) for _e in dlst_1]
cs_p1=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_1]) for _e in v_plst_1]
cs_d1=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_1]) for _e in v_dlst_1]
cs_p2=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_2]) for _e in v_plst_2]
cs_d2=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_2]) for _e in v_dlst_2]
pre_lst_p1=[[cs_p1[_e][-1],Fore.WHITE,plst_1[_e],Style.RESET_ALL] if cs_p1[_e][0]>_th else [Style.RESET_ALL,plst_1[_e]] for _e in range(len(cs_p1))]
pre_lst_d1=[[cs_d1[_e][-1],Fore.WHITE,dlst_1[_e],Style.RESET_ALL] if cs_d1[_e][0]>_th else [Style.RESET_ALL,dlst_1[_e]] for _e in range(len(cs_d1))]
pre_lst_p2=[[cs_p2[_e][-1],Fore.WHITE,plst_2[_e],Style.RESET_ALL] if cs_p2[_e][0]>_th else [Style.RESET_ALL,plst_2[_e]] for _e in range(len(cs_p2))]
pre_lst_d2=[[cs_d2[_e][-1],Fore.WHITE,dlst_2[_e],Style.RESET_ALL] if cs_d2[_e][0]>_th else [Style.RESET_ALL,dlst_2[_e]] for _e in range(len(cs_d2))]
#if max_dp<max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)]):
# max_dp=max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)])
##print(plst_1)
##print(plst_2)
##print(dlst_1)
##print(dlst_2)
draw_lst_1=["".join(_e) for _e in pre_lst_1]
draw_lst_2=["".join(_e) for _e in pre_lst_2]
draw_lst_p1=["".join(_e) for _e in pre_lst_p1]
draw_lst_p2=["".join(_e) for _e in pre_lst_p2]
draw_lst_d1=["".join(_e) for _e in pre_lst_d1]
draw_lst_d2=["".join(_e) for _e in pre_lst_d2]
#replace_all(temp_c,key_lst,",",0)
##print(plst_1)
tp_str=""
##print("---------------------")
##print(Fore.BLUE+str(i)+Style.RESET_ALL)
temp_ot["case_id"]=i
temp_ot["plaintiff_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_p1]
temp_ot["defendant_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_d1]
temp_ot["dispute_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_1]
temp_ot["plaintiff_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_p2]
temp_ot["defendant_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_d2]
temp_ot["dispute_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_2]
#temp_ot["plaintiff_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p1]
#temp_ot["defendant_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_d1]
#temp_ot["dispute_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_1]
#temp_ot["plaintiff_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p2]
#temp_ot["defendant_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_d2]
#temp_ot["dispute_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_2]
tp_str+=Fore.BLUE+str(i)+Style.RESET_ALL+"\n"
tp_str+=(Fore.GREEN if temp_ot["ensemble_pred"]>=0.75 else Fore.YELLOW if temp_ot["ensemble_pred"]>=0.5 else Fore.RED)+str(temp_ot["ensemble_pred"])+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---plaintiff_case1---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_p1)+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---defendant_case1---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_d1)+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---dispute_case1---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_1)+Style.RESET_ALL+"\n"
###
tp_str+=Fore.BLUE+"target"+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---plaintiff_case2---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_p2)+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---defendant_case2---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_d2)+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---dispute_case2---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_2)+Style.RESET_ALL+"\n"
#tp_str+="---------------------"+"\n"
temp_ot["output"]=tp_str
rt_lst.append(temp_ot)
#print(tp_str)
ot=sorted(rt_lst,key=lambda x:x["ensemble_pred"],reverse=True)
ot_lst=[i["output"] for i in ot[:sug_th]]
for i in ot[:sug_th]:
file=open("./json_file/"+str(target_name).replace(",","_")+"&"+str(i["case_id"])+".json","w",encoding='utf8')
json.dump({_e:i[_e] for _e in i if _e!="output"},file,indent=4,ensure_ascii=False)
file.close()
return ot_lst,ot[:sug_th]
def suggesting(the_pool,target_name,case_dict):
global ANSI_COLORS,_th,c_th,sug_th,corpus_dict,corpus_pd_f,vec_lst,id_lst,sen_lst,corpus_clust_label,_cluster_core_dict,_embedder
global bilstm_len,cnn_len,emb_dim,inset_th,clust_th
lst_2=[_e for _e in case_dict["p_point"]][:bilstm_len]
#for _e in lst2:
# temp=_embedder.encode(_e)
# vec_lst_2.append()
vec_lst_2=[_embedder.encode(_e) for _e in lst_2]
clst_2=[clust_search(_cluster_core_dict,_e,clust_th) for _e in vec_lst_2]
plst_2=replace_all("".join(case_dict["plaintiff"]),key_lst,sp_key,1).split(sp_key)
v_plst_2=[_embedder.encode(_e) for _e in plst_2]
#print(clst_2)
rt_lst=[]
for i in tqdm(the_pool):
if target_name==i:
continue
lst_1=[_e for _e in corpus_dict[i]]
id_lst_1=[id_lst[sen_lst.index(_e)] for _e in lst_1]
vec_lst_1=[vec_lst[sen_lst.index(_e)] for _e in lst_1]#[_embedder.encode(_e) for _e in lst_1]
clst_1=[corpus_clust_label[_e] for _e in id_lst_1]#[clust_search(_cluster_core_dict,_e,0.68) for _e in vec_lst_1]
##print(clst_1)
inset=sorted([_e for _e in set(clst_1)&set(clst_2) if _e!=-1])
temp_ot={}
if len(inset)>=max(1,inset_th):
temp_ot["target"]=target_name
temp_ot["inset"]=inset
##print(len(inset))
_img=img_resize(vec2img(vec_lst_1,clst_1,vec_lst_2,clst_2,clust_th),cnn_len)
cnn_pred=cnn_model.predict(np.array([_img])/255)
_con1,_con2=[],[]
for tp_i in range(bilstm_len):
if len(lst_1)>tp_i:
_con1.append(vec_lst_1[tp_i])
else:
_con1.append([0]*emb_dim)
for tp_i in range(bilstm_len):
if len(lst_2)>tp_i:
_con2.append(vec_lst_2[tp_i])
else:
_con2.append([0]*emb_dim)
_con1=np.array([_con1])
_con2=np.array([_con2])
#print(len(_con1),len(_con2),len(_con2[0]))
#_con1=list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_1))) if len(lst_1)<=bilstm_len else list(np.array(vec_lst_1).reshape(len(lst_1)*emb_dim))[:bilstm_len*emb_dim]
#_con2=list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))+[0]*(emb_dim*(bilstm_len-len(lst_2))) if len(lst_2)<=bilstm_len else list(np.array(vec_lst_2).reshape(len(lst_2)*emb_dim))[:bilstm_len*emb_dim]
bilstm_pred=bilstm_model.predict([_con1,_con2])
temp_ot["cnn_pred"]=float(cnn_pred[0][0])
temp_ot["bilstm_pred"]=float(bilstm_pred[0][0])
##print(cnn_pred)
##print(bilstm_pred)
x_e=[[bilstm_pred[0][0],cnn_pred[0][0]]]
ensemble_pred=logistic(x_r,y_r,x_e)
temp_ot["ensemble_pred"]=float(ensemble_pred[0])
##print(ensemble_pred)
pre_lst_1=[[color_lst[inset.index(clst_1[_e]) % len(color_lst)],Fore.WHITE,lst_1[_e],Style.RESET_ALL] if clst_1[_e] in inset else [Style.RESET_ALL,lst_1[_e]] for _e in range(len(lst_1))]
pre_lst_2=[[color_lst[inset.index(clst_2[_e]) % len(color_lst)],Fore.WHITE,lst_2[_e],Style.RESET_ALL] if clst_2[_e] in inset else [Style.RESET_ALL,lst_2[_e]] for _e in range(len(lst_2))]
vlst_1=[[vec_lst_1[_e],pre_lst_1[_e][0]] for _e in range(len(pre_lst_1)) if len(pre_lst_1[_e])==4]
vlst_2=[[vec_lst_2[_e],pre_lst_2[_e][0]] for _e in range(len(pre_lst_2)) if len(pre_lst_2[_e])==4]
##print(lst_1)
plst_1=replace_all("".join(corpus_pd_f[i.replace("_",",")][0]),key_lst,sp_key,1).split(sp_key)
v_plst_1=[_embedder.encode(_e) for _e in plst_1]
cs_p1=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_1]) for _e in v_plst_1]
cs_p2=[max([[cos_sim(_e,_v[0]),_v[-1]] for _v in vlst_2]) for _e in v_plst_2]
pre_lst_p1=[[cs_p1[_e][-1],Fore.WHITE,plst_1[_e],Style.RESET_ALL] if cs_p1[_e][0]>_th else [Style.RESET_ALL,plst_1[_e]] for _e in range(len(cs_p1))]
pre_lst_p2=[[cs_p2[_e][-1],Fore.WHITE,plst_2[_e],Style.RESET_ALL] if cs_p2[_e][0]>_th else [Style.RESET_ALL,plst_2[_e]] for _e in range(len(cs_p2))]
#if max_dp<max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)]):
# max_dp=max([len(plst_1),len(plst_2),len(dlst_1),len(dlst_2)])
##print(plst_1)
##print(plst_2)
##print(dlst_1)
##print(dlst_2)
draw_lst_1=["".join(_e) for _e in pre_lst_1]
draw_lst_2=["".join(_e) for _e in pre_lst_2]
draw_lst_p1=["".join(_e) for _e in pre_lst_p1]
draw_lst_p2=["".join(_e) for _e in pre_lst_p2]
#replace_all(temp_c,key_lst,",",0)
##print(plst_1)
tp_str=""
##print("---------------------")
##print(Fore.BLUE+str(i)+Style.RESET_ALL)
temp_ot["case_id"]=i
temp_ot["plaintiff_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_p1]
temp_ot["p_point_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_1]
temp_ot["plaintiff_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_p2]
temp_ot["p_point_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[Back.WHITE],"font_color":ANSI_COLORS[Fore.BLACK],"content":_e[-1]} for _e in pre_lst_2]
#temp_ot["plaintiff_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p1]
#temp_ot["p_point_case1"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_1]
#temp_ot["plaintiff_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_p2]
#temp_ot["p_point_case2"]=[{"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[_e[1]],"content":_e[-2]} if len(_e)==4 else {"background_color":ANSI_COLORS[_e[0]],"font_color":ANSI_COLORS[Fore.WHITE],"content":_e[-1]} for _e in pre_lst_2]
tp_str+=Fore.BLUE+str(i)+Style.RESET_ALL+"\n"
tp_str+=(Fore.GREEN if temp_ot["ensemble_pred"]>=0.75 else Fore.YELLOW if temp_ot["ensemble_pred"]>=0.5 else Fore.RED)+str(temp_ot["ensemble_pred"])+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---plaintiff_case1---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_p1)+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---p_point_case1---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_1)+Style.RESET_ALL+"\n"
###
tp_str+=Fore.BLUE+"target"+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---plaintiff_case2---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_p2)+Style.RESET_ALL+"\n"
tp_str+=Fore.MAGENTA+"---p_point_case2---"+Style.RESET_ALL+"\n"
tp_str+="".join(draw_lst_2)+Style.RESET_ALL+"\n"
#tp_str+="---------------------"+"\n"
temp_ot["output"]=tp_str
rt_lst.append(temp_ot)
#print(tp_str)
ot=sorted(rt_lst,key=lambda x:x["ensemble_pred"],reverse=True)
ot_lst=[i["output"] for i in ot[:sug_th]]
for i in ot[:sug_th]:
file=open("./json_file/"+str(target_name).replace(",","_")+"&"+str(i["case_id"])+".json","w",encoding='utf8')
json.dump({_e:i[_e] for _e in i if _e!="output"},file,indent=4,ensure_ascii=False)
file.close()
return ot_lst,ot[:sug_th]
#---------------------------------------
_dir_lst=["../gpt4_0409_p_3/","../taide_llama3_8b_3/"]
_dir=_dir_lst[0]
sp_key="@"
emb_model="ftrob"
emb_model_path={\
"lf":"thunlp/Lawformer",\
"rob":'hfl/chinese-roberta-wwm-ext-large',\
"ftlf":"./sbert_pretrained_model/training-lawformer-clause_th10_100k_task-bs100-e2-2023-10-28/",
"ftrob":"./sbert_pretrained_model/training-roberta-clause_th10_100k_task-bs100-e2-2023-10-27",\
}
color_lst=[Back.BLUE,Back.GREEN,Back.MAGENTA,Back.YELLOW,Back.RED,Back.CYAN]#[Fore.RED,Fore.GREEN,Fore.YELLOW,Fore.BLUE,Fore.MAGENTA,Fore.CYAN]
#log_f=json.load(open("./src/plaintiff_logistic_features.json","r"))["BiLSTM_CNN"]
#pd_path,dis_path,s_path,v_path,c_path,t_path,cr_path,br_path=["TAIDE-LX-8B.jsonl","llama3_taide_8b_re_3_o_c.json","sentence.json","vector.json","hdb_cluster.json","hdb_ternary_array.json","hdb_cnn_result.json","hdb_sa_result.json"]
if sug_type=="plaintiff":
log_f=json.load(open("./src/plaintiff_logistic_features.json","r"))["BiLSTM_CNN"]
x_r=np.array(log_f)[:,:-1]
y_r=np.array(log_f)[:,-1]
pd_f=corpus_pd_f=json.load(open("./src/corpus3835_raw.json","r"))["claim"]
s_f=json.load(open("./src/plaintiff_corpus3835_sen.json","r"))
v_f=json.load(open("./src/plaintiff_corpus3835_vec.json","r"))#json.load(open(_dir+v_path,"r"))
o_c_f=json.load(open("./src/plaintiff_corpus3835_cluster.json","r"))["clusters"]
c_f=clust_2_dict(o_c_f)
t_f=json.load(open("./src/plaintiff_ter.json","r"))
if pool_type=="corpus3835":
corpus_clust_label=clust_label(o_c_f)
vec_lst=v_f["vector"]
id_lst=v_f["id"]
sen_lst=s_f["sentence"]
corpus_dict={}
for i in range(len(id_lst)):
fid=id_lst[i].split("@")[0]
if fid not in corpus_dict:
corpus_dict[fid]=[sen_lst[i]]
else:
corpus_dict[fid].append(sen_lst[i])
corpus_pd_f=json.load(open("./src/corpus3835_raw.json","r"))["claim"]
else:
vec_f=json.load(open("./src/plaintiff_2022~2023_vec.json","r"))
vec_lst=[_e for i in vec_f for _e in vec_f[i]]
corpus_dict=json.load(open("./src/plaintiff_2022~2023_raw.json","r"))
corpus_pd_f=json.load(open("./src/2022~2023_raw.json","r"))["claim"]
corpus_clust_f=json.load(open("./src/plaintiff_2022~2023_clust.json","r"))
sen_lst=[_e for i in corpus_dict for _e in corpus_dict[i]]
id_lst=[i+"@"+str(_e) for i in corpus_dict for _e in range(len(corpus_dict[i]))]
corpus_clust_label={_e:corpus_clust_f[_e[:_e.find("@")]][int(_e[_e.find("@")+1:])] for _e in id_lst}
elif sug_type=="dispute":
log_f=json.load(open("./src/dispute_logistic_features.json","r"))["BiLSTM_CNN"]
x_r=np.array(log_f)[:,:-1]
y_r=np.array(log_f)[:,-1]
pd_f=corpus_pd_f=json.load(open("./src/corpus3835_raw_dis.json","r"))["claim"]
s_f=json.load(open("./src/dispute_corpus3835_sen.json","r"))
v_f=json.load(open("./src/dispute_corpus3835_vec.json","r"))#json.load(open(_dir+v_path,"r"))
o_c_f=json.load(open("./src/dispute_corpus3835_cluster.json","r"))["clusters"]
c_f=clust_2_dict(o_c_f)
t_f=json.load(open("./src/dispute_ter.json","r"))
if pool_type=="corpus3835":
corpus_clust_label=clust_label(o_c_f)
vec_lst=v_f["vector"]
id_lst=v_f["id"]
sen_lst=s_f["sentence"]
corpus_dict={}
for i in range(len(id_lst)):
fid=id_lst[i].split("@")[0]
if fid not in corpus_dict:
corpus_dict[fid]=[sen_lst[i]]
else:
corpus_dict[fid].append(sen_lst[i])
print(corpus_dict)
corpus_pd_f=json.load(open("./src/corpus3835_raw_dis.json","r"))["claim"]
else:
vec_f=json.load(open("./src/dispute_2022~2023_vec.json","r"))
vec_lst=[_e for i in vec_f for _e in vec_f[i]]
corpus_dict=json.load(open("./src/dispute_2022~2023_raw.json","r"))
corpus_pd_f=json.load(open("./src/new22_23_3k3_corpus_raw.json","r"))["claim"]
corpus_clust_f=json.load(open("./src/dispute_22~23_clust.json","r"))
sen_lst=[_e for i in corpus_dict for _e in corpus_dict[i]]
id_lst=[i+"@"+str(_e) for i in corpus_dict for _e in range(len(corpus_dict[i]))]
corpus_clust_label={_e:corpus_clust_f[_e[:_e.find("@")]][int(_e[_e.find("@")+1:])] for _e in id_lst}
#if pool_type=="corpus3835":
o_new_point_f=lst_2_dict(jl("./src/gpt-4-turbo-0409-0.3.jsonl"))
o_new_pd_f=json.load(open("./src/new_3k3_corpus_raw.json","r"))["claim"]
#else:
n_new_point_f=lst_2_dict(jl("./src/gpt-4-turbo-0409-0.3-new22_23.jsonl"))
n_new_pd_f=json.load(open("./src/new22_23_3k3_corpus_raw.json","r"))["claim"]
new_point_f={**o_new_point_f,**n_new_point_f}
new_pd_f={**o_new_pd_f,**n_new_pd_f}
###
key_lst=[",","。","?","?","!","!",";",":",";",":"]#["。","?","?","!","!",";",":",";",":"]
_embedder = SentenceTransformer(emb_model_path[emb_model])
cnn_model =...
bilstm_model =...
"""#fifo
cnn_load()
bilstm_load()
"""
cnn_load("/cpu:0")
bilstm_load("/cpu:0")
#"""
_cluster_core_dict=clust_core(o_c_f,v_f["vector"],v_f["id"],"central")
#---------------------------------------
from colorama import Fore,Style,Back
import gradio as gr
def case_sug_dis(file_name,plaintiff,defendant,p_point,d_point,dispute_list):
global new_pd_f,new_point_f,corpus_dict
file_name=file_name.replace("_",",")
##print(file_name)
##print(point_f)
##print(list(pd_f.keys()).index(file_name))
if file_name not in new_pd_f:
#print("file not found")
file_name="user_input"
else:
plaintiff=new_pd_f[file_name][0]
defendant=new_pd_f[file_name][1]
p_point=new_point_f[file_name][0]
d_point=new_point_f[file_name][1]
dispute_list=new_point_f[file_name][2]
global sug_th
p_point="。".split(p_point) if type(p_point)==type("111") else p_point
d_point="。".split(d_point) if type(d_point)==type("111") else d_point
dispute_list="。".split(dispute_list) if type(dispute_list)==type("111") else dispute_list
_pool=[i for i in corpus_dict]
_case_dict={"plaintiff":plaintiff,"defendant":defendant,"p_point":p_point,"d_point":d_point,"dispute":dispute_list}
ot,ot_dict=suggesting_dis(_pool,file_name,_case_dict)
dispute="\n".join(dispute_list)
#ot=[Back.BLUE+dispute+Style.RESET_ALL]*10
output_list=[]
#print("-----")
#print(len(ot_dict))
out_path="./out_of_range.html"
for i in range(sug_th):
if i<len(ot_dict):
_path="./html_file/test"+str(i)+".html"
output_html=ansi_to_html_dis(ot_dict[i],_path)
#output_image = Image.open(_path)
output_list.append(_path)
else:
output_list.append(out_path)
return output_list
def case_sug(file_name,plaintiff,p_point):
global new_pd_f,new_point_f,corpus_dict
file_name=file_name.replace("_",",")
#print(file_name)
##print(point_f)
##print(list(pd_f.keys()).index(file_name))
if file_name not in new_pd_f:
#print("file not found")
file_name="user_input"
else:
plaintiff=new_pd_f[file_name][0]
p_point=new_point_f[file_name][0]
global sug_th
p_point=p_point.split("。") if type(p_point)==type("111") else p_point
_pool=[i for i in corpus_dict]
_case_dict={"plaintiff":plaintiff,"p_point":p_point}
#print(_case_dict,[type(_case_dict[_e]) for _e in _case_dict])
ot,ot_dict=suggesting(_pool,file_name,_case_dict)
#ot=[Back.BLUE+dispute+Style.RESET_ALL]*10
output_list=[]
#print("-----")
#print(len(ot_dict))
out_path="./out_of_range.html"
for i in range(sug_th):
if i<len(ot_dict):
_path="./html_file/test"+str(i)+".html"
output_html=ansi_to_html(ot_dict[i],_path)
#output_image = Image.open(_path)
output_list.append(_path)
else:
output_list.append(out_path)
return output_list
if sug_type=="plaintiff":
demo = gr.Interface(fn=case_sug, inputs=["text","text","text"], outputs=[gr.outputs.File() for i in range(sug_th)])
demo.queue()
demo.launch(share=True,server_port=14096,show_error=True)
elif sug_type=="dispute":
demo = gr.Interface(fn=case_sug_dis, inputs=["text","text","text","text","text","text"], outputs=[gr.outputs.File() for i in range(sug_th)])
demo.queue()
demo.launch(share=True,server_port=12048,show_error=True)
|