juanako-7b-UNA / README.md
fblgit's picture
Update README.md
d216abc
|
raw
history blame
10.9 kB
---
license: apache-2.0
tags:
- alignment-handbook
- generated_from_trainer
- juanako
- mistral
- UNA
datasets:
- HuggingFaceH4/ultrafeedback_binarized
model-index:
- name: juanako-7b-UNA
results:
- task:
type: text-generation
name: TruthfulQA (MC2)
dataset:
type: text-generation
name: truthful_qa
config: multiple_choice
split: validation
metrics:
- type: accuracy
value: 65.49
- task:
type: text-generation
name: ARC-Challenge
dataset:
type: text-generation
name: ai2_arc
config: ARC-Challenge
split: test
metrics:
- type: accuracy
value: 68.09
- task:
type: text-generation
name: HellaSwag
dataset:
type: text-generation
name: Rowan/hellaswag
split: test
metrics:
- type: accuracy
value: 85.20
- task:
type: text-generation
name: GSM8k
dataset:
type: text-generation
name: gsm8k
config: main
split: test
metrics:
- type: accuracy
value: 48.98
- task:
type: text-generation
name: Winogrande
dataset:
type: text-generation
name: winogrande
config: winogrande_debiased
split: test
metrics:
- type: accuracy
value: 76.8
- task:
type: text-generation
name: MMLU
dataset:
type: text-generation
name: cais/mmlu
config: all
split: test
metrics:
- type: accuracy
value: 61.37
- task:
type: text-generation
name: PiQA
dataset:
type: text-generation
name: piqa
split: test
metrics:
- type: accuracy
value: 83.57
- task:
type: text-generation
name: DROP
dataset:
type: text-generation
name: drop
split: validation
metrics:
- type: accuracy
value: 49.8
- task:
type: text-generation
name: PubMedQA
dataset:
type: text-generation
name: bigbio/pubmed_qa
config: pubmed_qa_artificial_bigbio_qa
split: validation
metrics:
- type: accuracy
value: 76.0
---
# juanako-7b-UNA-v2
This model is a fine-tuned version of [fblgit/juanako-7b-UNA-v2-phase-1](https://huggingface.co./fblgit/juanako-7b-UNA-v2-phase-1) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It outperforms in many aspects most of the current Mistral based models.
Author [Xavier M.](mailto:[email protected]) @fblgit
## Scoring and records (26-November-2023)
Here are some results:
* Scores #1 7B Model
* Scores #4 GSM8k
* Scores #2 in TruthfulQA
* Scores #6 in CoPa
* Scores #2 in PiQA
* Scores #9 in BoolQ
Many evaluations were performed, but it behaves very balanced in multiple fields. Feel free to submit more evaluation results.
It scores: **65.1** according HuggingFace LLM Leaderboard.
## Model description
juanako uses UNA, Uniform Neural Alignment. A training technique that ease alignment between transformer layers yet to be published.
## TruthfulQA 0-Shot
```
| Tasks |Version|Filter|Metric|Value | |Stderr|
|--------------|-------|------|------|-----:|---|-----:|
|truthfulqa_mc2|Yaml |none |acc |0.6549|± |0.0153|
```
## ARC 25-Shot
```
| Tasks |Version|Filter| Metric |Value | |Stderr|
|-------------|-------|------|--------|-----:|---|-----:|
|arc_challenge|Yaml |none |acc |0.6476|± |0.0140|
| | |none |acc_norm|0.6809|± |0.0136|
```
## HellaSwag 10-Shot
```
| Tasks |Version|Filter| Metric |Value | |Stderr|
|---------|-------|------|--------|-----:|---|-----:|
|hellaswag|Yaml |none |acc |0.6703|± |0.0047|
| | |none |acc_norm|0.8520|± |0.0035|
```
## GSM8k 5-Shot
```
|Tasks|Version| Filter | Metric |Value | |Stderr|
|-----|-------|----------|-----------|-----:|---|-----:|
|gsm8k|Yaml |get-answer|exact_match|0.4898|± |0.0138|
```
## GPT Evaluations 0-Shot
```
| Tasks |Version|Filter| Metric |Value | |Stderr|
|--------------|-------|------|----------|-----:|---|-----:|
|boolq |Yaml |none |acc |0.8703|± |0.0059|
|lambada_openai|Yaml |none |perplexity|3.2598|± |0.0705|
| | |none |acc |0.7336|± |0.0062|
|piqa |Yaml |none |acc |0.8254|± |0.0089|
| | |none |acc_norm |0.8292|± |0.0088|
|sciq |Yaml |none |acc |0.9580|± |0.0063|
| | |none |acc_norm |0.9130|± |0.0089|
```
## MathQA 0-Shot
```
|Tasks |Version|Filter| Metric |Value | |Stderr|
|------|-------|------|--------|-----:|---|-----:|
|mathqa|Yaml |none |acc |0.3752|± |0.0089|
| | |none |acc_norm|0.3772|± |0.0089|
```
## PiQa 1-Shot
```
|Tasks|Version|Filter| Metric |Value | |Stderr|
|-----|-------|------|--------|-----:|---|-----:|
|piqa |Yaml |none |acc |0.8308|± |0.0087|
| | |none |acc_norm|0.8357|± |0.0086|
```
## Winogrande 5-Shot
```
| Tasks |Version|Filter|Metric|Value| |Stderr|
|----------|-------|------|------|----:|---|-----:|
|winogrande|Yaml |none |acc |0.768|± |0.0119|
```
## PubMedQA 0-Shot
```
| Tasks |Version|Filter|Metric|Value| |Stderr|
|--------|-------|------|------|----:|---|-----:|
|pubmedqa|Yaml |none |acc | 0.76|± |0.0191|
```
## RACE 1-Shot
```
|Tasks|Version|Filter|Metric|Value | |Stderr|
|-----|-------|------|------|-----:|---|-----:|
|race |Yaml |none |acc |0.5282|± |0.0154|
```
## MMLU 5-Shot (8-Bit)
```
| Groups |Version|Filter|Metric|Value | |Stderr|
|------------------|-------|------|------|-----:|---|-----:|
|mmlu |N/A |none |acc |0.6137|± |0.1243|
| - humanities |N/A |none |acc |0.5671|± |0.1101|
| - other |N/A |none |acc |0.6859|± |0.1164|
| - social_sciences|N/A |none |acc |0.7195|± |0.0713|
| - stem |N/A |none |acc |0.5087|± |0.1297|
```
## DROP 3-Shot (8-Bit) (Instruct-Eval)
```
{'score': 0.49801113762927607}
{'drop': 49.8}
drop: 49.8
```
## CRASS 0-Shot (Instruct-Eval)
```
{'score': 0.8357664233576643}
{'crass': 83.58}
crass: 83.58
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 14
- gradient_accumulation_steps: 16
- total_train_batch_size: 224
- total_eval_batch_size: 14
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.4795 | 0.2 | 56 | 0.4958 | -1.3684 | -2.6385 | 0.7552 | 1.2701 | -265.3887 | -241.2612 | -2.2572 | -2.4922 |
| 0.4642 | 0.4 | 112 | 0.4859 | -1.0380 | -1.9769 | 0.7273 | 0.9389 | -258.7718 | -237.9569 | -2.2414 | -2.4751 |
| 0.4758 | 0.61 | 168 | 0.4808 | -1.2594 | -2.3704 | 0.7343 | 1.1110 | -262.7074 | -240.1708 | -2.2305 | -2.4633 |
| 0.4549 | 0.81 | 224 | 0.4768 | -1.1906 | -2.3201 | 0.7552 | 1.1295 | -262.2044 | -239.4827 | -2.2284 | -2.4610 |
### Framework versions
- Transformers 4.35.0-UNA
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
## Citations
If you find juanako useful please:
```
@misc{juanako7buna,
title={Juanako: Uniform Neural Alignment},
author={Xavier Murias},
year={2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co./fblgit/juanako-7b-UNA}},
}
```
```
@misc{lin2021truthfulqa,
title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
author={Stephanie Lin and Jacob Hilton and Owain Evans},
year={2021},
eprint={2109.07958},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{tunstall2023zephyr,
title={Zephyr: Direct Distillation of LM Alignment},
author={Lewis Tunstall and Edward Beeching and Nathan Lambert and Nazneen Rajani and Kashif Rasul and Younes Belkada and Shengyi Huang and Leandro von Werra and Clémentine Fourrier and Nathan Habib and Nathan Sarrazin and Omar Sanseviero and Alexander M. Rush and Thomas Wolf},
year={2023},
eprint={2310.16944},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{cobbe2021gsm8k,
title={Training Verifiers to Solve Math Word Problems},
author={Cobbe, Karl and Kosaraju, Vineet and Bavarian, Mohammad and Chen, Mark and Jun, Heewoo and Kaiser, Lukasz and Plappert, Matthias and Tworek, Jerry and Hilton, Jacob and Nakano, Reiichiro and Hesse, Christopher and Schulman, John},
journal={arXiv preprint arXiv:2110.14168},
year={2021}
}
@inproceedings{Bisk2020,
author = {Yonatan Bisk and Rowan Zellers and
Ronan Le Bras and Jianfeng Gao
and Yejin Choi},
title = {PIQA: Reasoning about Physical Commonsense in
Natural Language},
booktitle = {Thirty-Fourth AAAI Conference on
Artificial Intelligence},
year = {2020},
}
@software{eval-harness,
author = {Gao, Leo and
Tow, Jonathan and
Biderman, Stella and
Black, Sid and
DiPofi, Anthony and
Foster, Charles and
Golding, Laurence and
Hsu, Jeffrey and
McDonell, Kyle and
Muennighoff, Niklas and
Phang, Jason and
Reynolds, Laria and
Tang, Eric and
Thite, Anish and
Wang, Ben and
Wang, Kevin and
Zou, Andy},
title = {A framework for few-shot language model evaluation},
month = sep,
year = 2021,
publisher = {Zenodo},
version = {v0.0.1},
doi = {10.5281/zenodo.5371628},
url = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{rafailov2023direct,
title={Direct Preference Optimization: Your Language Model is Secretly a Reward Model},
author={Rafael Rafailov and Archit Sharma and Eric Mitchell and Stefano Ermon and Christopher D. Manning and Chelsea Finn},
year={2023},
eprint={2305.18290},
archivePrefix={arXiv},
}
```