fbaldassarri's picture
Initial Upload
c1959f1 verified
metadata
language:
  - en
  - de
  - fr
  - it
  - pt
  - hi
  - es
  - th
license: llama3.2
library_name: transformers
tags:
  - autoround
  - auto-round
  - intel
  - intel-autoround
  - gptq
  - woq
  - meta
  - pytorch
  - llama
  - llama-3
model_name: Llama 3.2 3B
base_model: meta-llama/Llama-3.2-3B
inference: false
model_creator: meta-llama
pipeline_tag: text-generation
prompt_template: '{prompt} '
quantized_by: fbaldassarri

Model Information

Quantized version of meta-llama/Llama-3.2-3B using torch.float32 for quantization tuning.

  • 8 bits (INT8)
  • group size = 128
  • Symmetrical Quantization
  • Method WoQ (AutoRound format)

Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128)

Quantization framework: Intel AutoRound

Note: this INT8 version of Llama-3.2-3B has been quantized to run inference through CPU.

Replication Recipe

Step 1 Install Requirements

I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment.

wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.3.tar.gz
tar -xvzf v0.4.3.tar.gz
cd auto-round-0.4.3
pip install -r requirements-cpu.txt --upgrade

Step 2 Build Intel AutoRound wheel from sources

pip install -vvv --no-build-isolation -e .[cpu]

Step 3 Script for Quantization

  from transformers import AutoModelForCausalLM, AutoTokenizer
  model_name = "meta-llama/Llama-3.2-3B"
  model = AutoModelForCausalLM.from_pretrained(model_name)
  tokenizer = AutoTokenizer.from_pretrained(model_name)
  from auto_round import AutoRound
  bits, group_size, sym, device, amp = 8, 128, True, 'cpu', False
  autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp)
  autoround.quantize()
  output_dir = "./AutoRound/meta-llama_Llama-3.2-3B-auto_round-int8-gs128-sym"
  autoround.save_quantized(output_dir, format='auto_round', inplace=True)

License

Llama 3.2 Community License

Disclaimer

This quantized model comes with no warrenty. It has been developed only for research purposes.