fathurim's picture
End of training
90a7159 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: image_classification
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5625

image_classification

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2386
  • Accuracy: 0.5625

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0874 1.0 10 2.0621 0.2313
2.036 2.0 20 2.0392 0.2375
1.9297 3.0 30 1.9592 0.3
1.7723 4.0 40 1.7877 0.3937
1.6184 5.0 50 1.6475 0.45
1.5407 6.0 60 1.5514 0.4875
1.4197 7.0 70 1.4967 0.4938
1.3092 8.0 80 1.4332 0.4813
1.1251 9.0 90 1.4457 0.4688
1.2081 10.0 100 1.3603 0.4938
0.9803 11.0 110 1.3501 0.5188
1.0105 12.0 120 1.3212 0.55
0.9264 13.0 130 1.2895 0.575
0.9229 14.0 140 1.2882 0.5188
0.9397 15.0 150 1.4027 0.475
0.8322 16.0 160 1.2824 0.5312
0.8185 17.0 170 1.3025 0.5
0.7592 18.0 180 1.3629 0.475
0.7416 19.0 190 1.3221 0.5437
0.6323 20.0 200 1.2714 0.5563
0.6453 21.0 210 1.3015 0.4938
0.6049 22.0 220 1.3065 0.5375
0.5919 23.0 230 1.2579 0.5375
0.5354 24.0 240 1.2428 0.55
0.6379 25.0 250 1.2884 0.5375
0.5681 26.0 260 1.2201 0.5938
0.4275 27.0 270 1.3199 0.4875
0.4791 28.0 280 1.3027 0.5312
0.4693 29.0 290 1.3737 0.4813
0.5528 30.0 300 1.3342 0.4688

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1