bert-ner / README.md
fahmiaziz's picture
Training complete
a01d974
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9419583517944173
- name: Recall
type: recall
value: 0.9513368385725472
- name: F1
type: f1
value: 0.9466243668948628
- name: Accuracy
type: accuracy
value: 0.9864171445819498
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-ner
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co./bert-base-uncased) on the conll2003 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0648
- Precision: 0.9420
- Recall: 0.9513
- F1: 0.9466
- Accuracy: 0.9864
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2234 | 1.0 | 878 | 0.0648 | 0.9110 | 0.9327 | 0.9217 | 0.9821 |
| 0.0443 | 2.0 | 1756 | 0.0552 | 0.9345 | 0.9432 | 0.9388 | 0.9854 |
| 0.0258 | 3.0 | 2634 | 0.0571 | 0.9385 | 0.9451 | 0.9418 | 0.9856 |
| 0.0139 | 4.0 | 3512 | 0.0623 | 0.9413 | 0.9500 | 0.9456 | 0.9863 |
| 0.0098 | 5.0 | 4390 | 0.0648 | 0.9420 | 0.9513 | 0.9466 | 0.9864 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.13.3