YAML Metadata
Error:
"model-index[0].results" is required
qa-indo-math-k-v2
This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set:
- Loss: 1.9328
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 1.0 | 80 | 0.7969 |
No log | 2.0 | 160 | 0.7612 |
No log | 3.0 | 240 | 0.7624 |
No log | 4.0 | 320 | 0.7424 |
No log | 5.0 | 400 | 0.7634 |
No log | 6.0 | 480 | 0.7415 |
0.9241 | 7.0 | 560 | 0.7219 |
0.9241 | 8.0 | 640 | 0.7792 |
0.9241 | 9.0 | 720 | 0.7803 |
0.9241 | 10.0 | 800 | 0.7666 |
0.9241 | 11.0 | 880 | 0.7614 |
0.9241 | 12.0 | 960 | 0.7616 |
0.6373 | 13.0 | 1040 | 0.7673 |
0.6373 | 14.0 | 1120 | 0.7818 |
0.6373 | 15.0 | 1200 | 0.8030 |
0.6373 | 16.0 | 1280 | 0.8021 |
0.6373 | 17.0 | 1360 | 0.8025 |
0.6373 | 18.0 | 1440 | 0.8628 |
0.5614 | 19.0 | 1520 | 0.8616 |
0.5614 | 20.0 | 1600 | 0.8739 |
0.5614 | 21.0 | 1680 | 0.8647 |
0.5614 | 22.0 | 1760 | 0.9006 |
0.5614 | 23.0 | 1840 | 0.9560 |
0.5614 | 24.0 | 1920 | 0.9395 |
0.486 | 25.0 | 2000 | 0.9453 |
0.486 | 26.0 | 2080 | 0.9569 |
0.486 | 27.0 | 2160 | 1.0208 |
0.486 | 28.0 | 2240 | 0.9860 |
0.486 | 29.0 | 2320 | 0.9806 |
0.486 | 30.0 | 2400 | 1.0681 |
0.486 | 31.0 | 2480 | 1.1085 |
0.4126 | 32.0 | 2560 | 1.1028 |
0.4126 | 33.0 | 2640 | 1.1110 |
0.4126 | 34.0 | 2720 | 1.1573 |
0.4126 | 35.0 | 2800 | 1.1387 |
0.4126 | 36.0 | 2880 | 1.2067 |
0.4126 | 37.0 | 2960 | 1.2079 |
0.3559 | 38.0 | 3040 | 1.2152 |
0.3559 | 39.0 | 3120 | 1.2418 |
0.3559 | 40.0 | 3200 | 1.2023 |
0.3559 | 41.0 | 3280 | 1.2679 |
0.3559 | 42.0 | 3360 | 1.3178 |
0.3559 | 43.0 | 3440 | 1.3419 |
0.3084 | 44.0 | 3520 | 1.4702 |
0.3084 | 45.0 | 3600 | 1.3824 |
0.3084 | 46.0 | 3680 | 1.4227 |
0.3084 | 47.0 | 3760 | 1.3925 |
0.3084 | 48.0 | 3840 | 1.4940 |
0.3084 | 49.0 | 3920 | 1.4110 |
0.2686 | 50.0 | 4000 | 1.4534 |
0.2686 | 51.0 | 4080 | 1.4749 |
0.2686 | 52.0 | 4160 | 1.5351 |
0.2686 | 53.0 | 4240 | 1.5479 |
0.2686 | 54.0 | 4320 | 1.4755 |
0.2686 | 55.0 | 4400 | 1.5207 |
0.2686 | 56.0 | 4480 | 1.5075 |
0.2388 | 57.0 | 4560 | 1.5470 |
0.2388 | 58.0 | 4640 | 1.5361 |
0.2388 | 59.0 | 4720 | 1.5914 |
0.2388 | 60.0 | 4800 | 1.6430 |
0.2388 | 61.0 | 4880 | 1.6249 |
0.2388 | 62.0 | 4960 | 1.5503 |
0.2046 | 63.0 | 5040 | 1.6441 |
0.2046 | 64.0 | 5120 | 1.6789 |
0.2046 | 65.0 | 5200 | 1.6174 |
0.2046 | 66.0 | 5280 | 1.6175 |
0.2046 | 67.0 | 5360 | 1.6947 |
0.2046 | 68.0 | 5440 | 1.6299 |
0.1891 | 69.0 | 5520 | 1.7419 |
0.1891 | 70.0 | 5600 | 1.8442 |
0.1891 | 71.0 | 5680 | 1.8802 |
0.1891 | 72.0 | 5760 | 1.8233 |
0.1891 | 73.0 | 5840 | 1.8172 |
0.1891 | 74.0 | 5920 | 1.8181 |
0.1664 | 75.0 | 6000 | 1.8399 |
0.1664 | 76.0 | 6080 | 1.8128 |
0.1664 | 77.0 | 6160 | 1.8423 |
0.1664 | 78.0 | 6240 | 1.8380 |
0.1664 | 79.0 | 6320 | 1.8941 |
0.1664 | 80.0 | 6400 | 1.8636 |
0.1664 | 81.0 | 6480 | 1.7949 |
0.1614 | 82.0 | 6560 | 1.8342 |
0.1614 | 83.0 | 6640 | 1.8123 |
0.1614 | 84.0 | 6720 | 1.8639 |
0.1614 | 85.0 | 6800 | 1.8580 |
0.1614 | 86.0 | 6880 | 1.8816 |
0.1614 | 87.0 | 6960 | 1.8579 |
0.1487 | 88.0 | 7040 | 1.8783 |
0.1487 | 89.0 | 7120 | 1.9175 |
0.1487 | 90.0 | 7200 | 1.9025 |
0.1487 | 91.0 | 7280 | 1.9207 |
0.1487 | 92.0 | 7360 | 1.9195 |
0.1487 | 93.0 | 7440 | 1.9142 |
0.1355 | 94.0 | 7520 | 1.9333 |
0.1355 | 95.0 | 7600 | 1.9238 |
0.1355 | 96.0 | 7680 | 1.9256 |
0.1355 | 97.0 | 7760 | 1.9305 |
0.1355 | 98.0 | 7840 | 1.9294 |
0.1355 | 99.0 | 7920 | 1.9301 |
0.1297 | 100.0 | 8000 | 1.9328 |
Framework versions
- Transformers 4.6.1
- Pytorch 1.7.0
- Datasets 1.11.0
- Tokenizers 0.10.3
- Downloads last month
- 1
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.