Update README.md
#4
by
sanchit-gandhi
- opened
README.md
CHANGED
@@ -55,15 +55,22 @@ To transcribe audio files the model can be used as a standalone acoustic model a
|
|
55 |
|
56 |
## Evaluation
|
57 |
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
```python
|
|
|
61 |
from datasets import load_dataset
|
62 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
63 |
-
|
64 |
-
import torch
|
65 |
-
from jiwer import wer
|
66 |
-
|
67 |
|
68 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
69 |
|
@@ -71,18 +78,21 @@ model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-large-960h").to("cuda"
|
|
71 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
72 |
|
73 |
def map_to_pred(batch):
|
74 |
-
|
|
|
|
|
75 |
with torch.no_grad():
|
76 |
logits = model(input_values.to("cuda")).logits
|
77 |
|
78 |
predicted_ids = torch.argmax(logits, dim=-1)
|
79 |
transcription = processor.batch_decode(predicted_ids)
|
80 |
-
batch["transcription"] = transcription
|
81 |
return batch
|
82 |
|
83 |
-
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=
|
|
|
84 |
|
85 |
-
print("WER:", wer(result["text"], result["transcription"]))
|
86 |
```
|
87 |
|
88 |
*Result (WER)*:
|
|
|
55 |
|
56 |
## Evaluation
|
57 |
|
58 |
+
First, ensure the required Python packages are installed. We'll require `transformers` for running the Wav2Vec2 model,
|
59 |
+
`datasets` for loading the LibriSpeech dataset, and `evaluate` plus `jiwer` for computing the word-error rate (WER):
|
60 |
+
|
61 |
+
```
|
62 |
+
pip install --upgrade pip
|
63 |
+
pip install --upgrade transformers datasets evaluate jiwer
|
64 |
+
```
|
65 |
+
|
66 |
+
The following code snippet shows how to evaluate **facebook/wav2vec2-large-960h** on LibriSpeech's "clean" and "other" test data.
|
67 |
+
The batch size can be set according to your device, and is set to `8` by default:
|
68 |
+
|
69 |
```python
|
70 |
+
import torch
|
71 |
from datasets import load_dataset
|
72 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
73 |
+
from evaluate import load
|
|
|
|
|
|
|
74 |
|
75 |
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
|
76 |
|
|
|
78 |
processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-large-960h")
|
79 |
|
80 |
def map_to_pred(batch):
|
81 |
+
audios = [audio["array"] for audio in batch["audio"]]
|
82 |
+
sampling_rate = batch["audio"][0]["sampling_rate"]
|
83 |
+
input_values = processor(audios, sampling_rate=sampling_rate, return_tensors="pt", padding="longest").input_values
|
84 |
with torch.no_grad():
|
85 |
logits = model(input_values.to("cuda")).logits
|
86 |
|
87 |
predicted_ids = torch.argmax(logits, dim=-1)
|
88 |
transcription = processor.batch_decode(predicted_ids)
|
89 |
+
batch["transcription"] = [t for t in transcription]
|
90 |
return batch
|
91 |
|
92 |
+
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=8, remove_columns=["audio"])
|
93 |
+
wer = load("wer")
|
94 |
|
95 |
+
print("WER:", wer.compute(references=result["text"], predictions=result["transcription"]))
|
96 |
```
|
97 |
|
98 |
*Result (WER)*:
|