Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -34,14 +34,14 @@ Since this model is a more efficiently trained ViT model, you can plug it into V
34
  Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
35
 
36
  ```python
37
- from transformers import AutoFeatureExtractor, ViTForImageClassification
38
  from PIL import Image
39
  import requests
40
  url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
41
  image = Image.open(requests.get(url, stream=True).raw)
42
- feature_extractor = AutoFeatureExtractor.from_pretrained('facebook/deit-tiny-patch16-224')
43
  model = ViTForImageClassification.from_pretrained('facebook/deit-tiny-patch16-224')
44
- inputs = feature_extractor(images=image, return_tensors="pt")
45
  outputs = model(**inputs)
46
  logits = outputs.logits
47
  # model predicts one of the 1000 ImageNet classes
 
34
  Here is how to use this model to classify an image of the COCO 2017 dataset into one of the 1,000 ImageNet classes:
35
 
36
  ```python
37
+ from transformers import AutoImageProcessor, ViTForImageClassification
38
  from PIL import Image
39
  import requests
40
  url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
41
  image = Image.open(requests.get(url, stream=True).raw)
42
+ processor = AutoImageProcessor.from_pretrained("facebook/deit-tiny-patch16-224")
43
  model = ViTForImageClassification.from_pretrained('facebook/deit-tiny-patch16-224')
44
+ inputs = processor(images=image, return_tensors="pt")
45
  outputs = model(**inputs)
46
  logits = outputs.logits
47
  # model predicts one of the 1000 ImageNet classes