Edit model card

SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("training_job_matching_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2-2024-09-03_13-14-25")
# Run inference
sentences = [
    "Responsable d'élevage en production ovine",
    "de gestion immobilière estimer la valeur d'un bien, d'un produit droit, contentieux et négociationappliquer un cadre juridique ou réglementaire réaliser le suivi des décisions prises en assemblées de copropriété traiter des dossiers de contentieux réaliser la gestion administrative des contrats management animer, coordonner une équipe gestion des ressources humaines gérer les ressources humaines conseil, transmission assurer une médiation constructionétablir l'état d'avancement de travaux piloter la préparation de travaux planifier des travaux de rénovation définir les besoins en rénovation du patrimoine immobilier",
    "de travail et risques professionnelsau domicile d'un particulier déplacements professionnels port d'équipement de protection individuel (epi) : gants, chaussures, casque, protections auditives horaires et durée du travailtravail en astreinte travail le week-end publics spécifiques particuliers secteurs d'activité • bâtiment et travaux publics (btp) 4 / 4 -",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9819
cosine_accuracy_threshold 0.6798
cosine_f1 0.9734
cosine_f1_threshold 0.6782
cosine_precision 0.9712
cosine_recall 0.9756
cosine_ap 0.9778
dot_accuracy 0.9799
dot_accuracy_threshold 169.4876
dot_f1 0.9706
dot_f1_threshold 169.4876
dot_precision 0.9627
dot_recall 0.9786
dot_ap 0.9774
manhattan_accuracy 0.9756
manhattan_accuracy_threshold 160.5027
manhattan_f1 0.9638
manhattan_f1_threshold 165.2382
manhattan_precision 0.9673
manhattan_recall 0.9603
manhattan_ap 0.9782
euclidean_accuracy 0.9827
euclidean_accuracy_threshold 12.7983
euclidean_f1 0.9745
euclidean_f1_threshold 12.8575
euclidean_precision 0.9733
euclidean_recall 0.9756
euclidean_ap 0.9783
max_accuracy 0.9827
max_accuracy_threshold 169.4876
max_f1 0.9745
max_f1_threshold 169.4876
max_precision 0.9733
max_recall 0.9786
max_ap 0.9783

Binary Classification

Metric Value
cosine_accuracy 0.8349
cosine_accuracy_threshold 0.9927
cosine_f1 0.5193
cosine_f1_threshold 0.7801
cosine_precision 0.4292
cosine_recall 0.6573
cosine_ap 0.5436
dot_accuracy 0.8377
dot_accuracy_threshold 247.4402
dot_f1 0.5101
dot_f1_threshold 180.7264
dot_precision 0.3992
dot_recall 0.7063
dot_ap 0.5302
manhattan_accuracy 0.8363
manhattan_accuracy_threshold 24.4719
manhattan_f1 0.5027
manhattan_f1_threshold 122.6577
manhattan_precision 0.4097
manhattan_recall 0.6503
manhattan_ap 0.5317
euclidean_accuracy 0.8363
euclidean_accuracy_threshold 1.9895
euclidean_f1 0.5251
euclidean_f1_threshold 10.4537
euclidean_precision 0.4372
euclidean_recall 0.6573
euclidean_ap 0.544
max_accuracy 0.8377
max_accuracy_threshold 247.4402
max_f1 0.5251
max_f1_threshold 180.7264
max_precision 0.4372
max_recall 0.7063
max_ap 0.544

Binary Classification

Metric Value
cosine_accuracy 0.91
cosine_accuracy_threshold 0.8936
cosine_f1 0.7556
cosine_f1_threshold 0.7639
cosine_precision 0.8031
cosine_recall 0.7133
cosine_ap 0.7999
dot_accuracy 0.9127
dot_accuracy_threshold 227.503
dot_f1 0.7576
dot_f1_threshold 227.503
dot_precision 0.8264
dot_recall 0.6993
dot_ap 0.7881
manhattan_accuracy 0.9113
manhattan_accuracy_threshold 109.2699
manhattan_f1 0.7556
manhattan_f1_threshold 121.613
manhattan_precision 0.8031
manhattan_recall 0.7133
manhattan_ap 0.7969
euclidean_accuracy 0.91
euclidean_accuracy_threshold 7.6809
euclidean_f1 0.7556
euclidean_f1_threshold 11.5803
euclidean_precision 0.8031
euclidean_recall 0.7133
euclidean_ap 0.8007
max_accuracy 0.9127
max_accuracy_threshold 227.503
max_f1 0.7576
max_f1_threshold 227.503
max_precision 0.8264
max_recall 0.7133
max_ap 0.8007

Binary Classification

Metric Value
cosine_accuracy 0.8809
cosine_accuracy_threshold 0.7636
cosine_f1 0.7021
cosine_f1_threshold 0.553
cosine_precision 0.6819
cosine_recall 0.7236
cosine_ap 0.7361
dot_accuracy 0.8787
dot_accuracy_threshold 217.5387
dot_f1 0.7004
dot_f1_threshold 164.1041
dot_precision 0.7004
dot_recall 0.7004
dot_ap 0.7299
manhattan_accuracy 0.8782
manhattan_accuracy_threshold 146.0133
manhattan_f1 0.7016
manhattan_f1_threshold 180.2034
manhattan_precision 0.6847
manhattan_recall 0.7194
manhattan_ap 0.7262
euclidean_accuracy 0.8804
euclidean_accuracy_threshold 13.7647
euclidean_f1 0.7046
euclidean_f1_threshold 15.2429
euclidean_precision 0.7046
euclidean_recall 0.7046
euclidean_ap 0.7391
max_accuracy 0.8809
max_accuracy_threshold 217.5387
max_f1 0.7046
max_f1_threshold 180.2034
max_precision 0.7046
max_recall 0.7236
max_ap 0.7391

Binary Classification

Metric Value
cosine_accuracy 0.9316
cosine_accuracy_threshold 0.63
cosine_f1 0.8316
cosine_f1_threshold 0.5285
cosine_precision 0.7843
cosine_recall 0.885
cosine_ap 0.8867
dot_accuracy 0.9293
dot_accuracy_threshold 199.23
dot_f1 0.8274
dot_f1_threshold 165.8962
dot_precision 0.7892
dot_recall 0.8695
dot_ap 0.8867
manhattan_accuracy 0.9289
manhattan_accuracy_threshold 176.4425
manhattan_f1 0.821
manhattan_f1_threshold 176.4425
manhattan_precision 0.8303
manhattan_recall 0.8119
manhattan_ap 0.8726
euclidean_accuracy 0.932
euclidean_accuracy_threshold 14.7442
euclidean_f1 0.8337
euclidean_f1_threshold 16.6326
euclidean_precision 0.7952
euclidean_recall 0.8761
euclidean_ap 0.8886
max_accuracy 0.932
max_accuracy_threshold 199.23
max_f1 0.8337
max_f1_threshold 176.4425
max_precision 0.8303
max_recall 0.885
max_ap 0.8886

Training Details

Training Dataset

Unnamed Dataset

  • Size: 42,735 training samples
  • Columns: name, fiche, and label
  • Approximate statistics based on the first 1000 samples:
    name fiche label
    type string string int
    details
    • min: 3 tokens
    • mean: 9.44 tokens
    • max: 44 tokens
    • min: 4 tokens
    • mean: 107.63 tokens
    • max: 128 tokens
    • 0: ~78.20%
    • 1: ~21.80%
  • Samples:
    name fiche label
    Front End Angular Developer communication WCF is used. The layer concept enables the reduction of dependencies (dependency injection) of the different tasks (separation of concerns). The entities are exchanged with the database via object-relational mapping (ORM) and processed using the CRUD methods. Through the consistent use of the MVVM pattern, we avoid code-behind. The user interface of the application is realized using the PRISM framework as a "Composite Application UI".Main tasks Software developerIn cooperation with a team located in Germany and respecting the software development guidelines and customers 0
    SCM : Administrateur des ventes CHEF DE PROJET CONFIRME MAÎTRISANT ANGULAR 4.SON RÔLE SERA L'ENCADREMENT D'UNE EQUIPE ET LA GESTION TOTALE DU DÉVELOPPEMENT D'UNE APPLICATION MOBILE ANDROID.ESPRIT D'ÉQUIPE OBLIGATOIRE. 0
    Talent Acquisition Junior Pilotage et suivi de toutes les activités du call center (commandes clients et interactions bénéficiaires de la carte).Assurer le calcul et le suivi des Kpi’s du call center.Veiller à la conformité des process et des procédures pour le call center.Contrôle de la prise en charge et la saisie des demandes et réclamations.Pilotage et suivi des projets de la direction clientèle.Assurer toutes demandes ou actions émanant de la Direction Clientèle.Assurer le maintien d’une bonne qualité de service.Augmenter la satisfaction 0
  • Loss: SoftmaxLoss

Evaluation Dataset

Unnamed Dataset

  • Size: 2,250 evaluation samples
  • Columns: name, fiche, and label
  • Approximate statistics based on the first 1000 samples:
    name fiche label
    type string string int
    details
    • min: 3 tokens
    • mean: 9.31 tokens
    • max: 36 tokens
    • min: 3 tokens
    • mean: 109.04 tokens
    • max: 128 tokens
    • 0: ~80.30%
    • 1: ~19.70%
  • Samples:
    name fiche label
    1way com Nous somme a la recherche de Profils en Telco avec connaissance en Produit! 😃Vous avez une connaissances dans la télécommunication? Emission ou réception (orange, sfr, boygues, free..)Vous voulez travailler dans un environnement stable, accueillant et sans pression?Vous êtes passionnés? Postulez maintenant et profitez d'un salaire motivant et pleins d'avantages:- Salaire 1100 a 1300 (selon le profil)- Primes et challenges- Tickets repas- Transport assuré- Samedi dimanche off- Titularisation- Convention 1
    Senior Front end Web Developer As part of our growth in Tunis, we are looking to hire a Sénior Front-End Web Developer, who is passionate by Web Development and would like to have a career in an international company, in the Private Banking sector, within an exciting work environment.You will take part, throughout the software development life cycle (SDLC), to the requirement analysis, development and the support of different applications for private banks.You will perform AngularJS frontend development.You will integrate a highly motivated development team working on providing solutions for the private banking sector in which you will integrate the existing global 1
    DÉVELOPPEUR FULLSTACK RUBY ET ANGULAR professionnel et d'évolution de carrière.- Projets stimulants et variés.- Esprit d'équipe et culture d'entreprise positive.- Salaire compétitif et avantages sociaux attractifs.Rejoignez MCOM et contribuez à révolutionner le commerce mobile avec nous! 0
  • Loss: SoftmaxLoss

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 32
  • num_train_epochs: 5
  • warmup_ratio: 0.1
  • bf16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss max_ap
0 0 - - 0.6610
0.0673 300 0.638 - -
0.1346 600 0.5642 - -
0.2020 900 0.4942 - -
0.2244 1000 - 0.4283 0.7756
0.2693 1200 0.4323 - -
0.3366 1500 0.3986 - -
0.4039 1800 0.3798 - -
0.4488 2000 - 0.3481 0.8517
0.4713 2100 0.3532 - -
0.5386 2400 0.3407 - -
0.6059 2700 0.323 - -
0.6732 3000 0.3022 0.2953 0.8899
0.7406 3300 0.2945 - -
0.8079 3600 0.2864 - -
0.8752 3900 0.2656 - -
0.8977 4000 - 0.2434 0.9199
0.9425 4200 0.2581 - -
1.0099 4500 0.2486 - -
1.0772 4800 0.2282 - -
1.1221 5000 - 0.2160 0.9248
1.1445 5100 0.2191 - -
1.2118 5400 0.2113 - -
1.2792 5700 0.2111 - -
1.3465 6000 0.2011 0.1882 0.9339
1.4138 6300 0.1894 - -
1.4811 6600 0.1814 - -
1.5485 6900 0.1772 - -
1.5709 7000 - 0.1697 0.9409
1.6158 7200 0.1731 - -
1.6831 7500 0.1707 - -
1.7504 7800 0.163 - -
1.7953 8000 - 0.1497 0.9411
1.8178 8100 0.1576 - -
1.8851 8400 0.1518 - -
1.9524 8700 0.1447 - -
2.0197 9000 0.142 0.1355 0.9483
2.0871 9300 0.1277 - -
2.1544 9600 0.1278 - -
2.2217 9900 0.1243 - -
2.2442 10000 - 0.1225 0.9526
2.2890 10200 0.1228 - -
2.3564 10500 0.1214 - -
2.4237 10800 0.1173 - -
2.4686 11000 - 0.1082 0.9606
2.4910 11100 0.1154 - -
2.5583 11400 0.1098 - -
2.6257 11700 0.1074 - -
2.6930 12000 0.105 0.1005 0.9656
2.7603 12300 0.1042 - -
2.8276 12600 0.0998 - -
2.8950 12900 0.0967 - -
2.9174 13000 - 0.0911 0.9645
2.9623 13200 0.0977 - -
3.0296 13500 0.0896 - -
3.0969 13800 0.0854 - -
3.1418 14000 - 0.0843 0.9686
3.1643 14100 0.0848 - -
3.2316 14400 0.0841 - -
3.2989 14700 0.082 - -
3.3662 15000 0.0815 0.0790 0.9711
3.4336 15300 0.0812 - -
3.5009 15600 0.0799 - -
3.5682 15900 0.0753 - -
3.5907 16000 - 0.0751 0.9725
3.6355 16200 0.0756 - -
3.7029 16500 0.0737 - -
3.7702 16800 0.0742 - -
3.8151 17000 - 0.0713 0.9750
3.8375 17100 0.0725 - -
3.9048 17400 0.0721 - -
3.9722 17700 0.0696 - -
4.0395 18000 0.0665 0.0664 0.9746
4.1068 18300 0.0648 - -
4.1741 18600 0.0636 - -
4.2415 18900 0.0617 - -
4.2639 19000 - 0.0637 0.9757
4.3088 19200 0.0624 - -
4.3761 19500 0.062 - -
4.4434 19800 0.0609 - -
4.4883 20000 - 0.0608 0.9774
4.5108 20100 0.0607 - -
4.5781 20400 0.061 - -
4.6454 20700 0.0612 - -
4.7127 21000 0.0598 0.0591 0.9777
4.7801 21300 0.0613 - -
4.8474 21600 0.0599 - -
4.9147 21900 0.0575 - -
4.9372 22000 - 0.0582 0.9783
4.9820 22200 0.0593 - -
5.0 22280 - - 0.5440
0.8303 181 - - 0.7148
0.4587 100 - 0.2849 0.7360
0.9174 200 - 0.3019 0.7230
1.3761 300 0.2712 0.2813 0.7697
1.8349 400 - 0.2667 0.8033
2.2936 500 - 0.2673 0.7936
2.7523 600 0.2268 0.2518 0.8078
3.2110 700 - 0.2539 0.8103
3.6697 800 - 0.2662 0.8118
4.1284 900 0.1845 0.2688 0.8003
4.5872 1000 - 0.2632 0.8081
0.4587 100 - 0.2642 0.8101
0.9174 200 - 0.2741 0.7995
1.3761 300 0.1742 0.2818 0.7861
1.8349 400 - 0.2595 0.8146
2.2936 500 - 0.2716 0.8021
2.7523 600 0.1572 0.2622 0.8013
3.2110 700 - 0.2660 0.7985
3.6697 800 - 0.2716 0.7986
4.1284 900 0.1327 0.2724 0.7942
4.5872 1000 - 0.2670 0.8007
5.0 1090 - - 0.5292
0.1497 100 - 0.4254 0.5464
0.2994 200 - 0.3918 0.5718
0.4491 300 0.3988 0.3853 0.5670
0.5988 400 - 0.3670 0.5780
0.7485 500 - 0.3630 0.5954
0.8982 600 0.3577 0.3551 0.6197
1.0479 700 - 0.3463 0.6320
1.1976 800 - 0.3362 0.6455
1.3473 900 0.3092 0.3547 0.6496
1.4970 1000 - 0.3403 0.6502
1.6467 1100 - 0.3418 0.6614
1.7964 1200 0.2901 0.3367 0.6781
1.9461 1300 - 0.3283 0.6939
2.0958 1400 - 0.3266 0.7053
2.2455 1500 0.2627 0.3275 0.7074
2.3952 1600 - 0.3174 0.6976
2.5449 1700 - 0.3275 0.7037
2.6946 1800 0.2319 0.3094 0.7086
2.8443 1900 - 0.3184 0.7118
2.9940 2000 - 0.3195 0.7076
3.1437 2100 0.2222 0.3225 0.7178
3.2934 2200 - 0.3214 0.7184
3.4431 2300 - 0.3170 0.7270
3.5928 2400 0.188 0.3236 0.7269
3.7425 2500 - 0.3174 0.7345
3.8922 2600 - 0.3196 0.7365
4.0419 2700 0.1877 0.3174 0.7394
4.1916 2800 - 0.3195 0.7355
4.3413 2900 - 0.3207 0.7373
4.4910 3000 0.1582 0.3274 0.7349
4.6407 3100 - 0.3252 0.7350
4.7904 3200 - 0.3210 0.7393
4.9401 3300 0.1612 0.3205 0.7386
5.0 3340 - - 0.8142
0.1497 100 - 0.2197 0.8248
0.2994 200 - 0.2117 0.8303
0.4491 300 0.2456 0.2299 0.8156
0.5988 400 - 0.2219 0.8113
0.7485 500 - 0.2149 0.8231
0.8982 600 0.2397 0.2110 0.8354
1.0479 700 - 0.2069 0.8479
1.1976 800 - 0.2070 0.8465
1.3473 900 0.1956 0.2046 0.8445
1.4970 1000 - 0.2070 0.8412
1.6467 1100 - 0.2001 0.8453
1.7964 1200 0.185 0.1970 0.8473
1.9461 1300 - 0.1904 0.8491
2.0958 1400 - 0.1864 0.8691
2.2455 1500 0.1537 0.1916 0.8570
2.3952 1600 - 0.1886 0.8740
2.5449 1700 - 0.1827 0.8770
2.6946 1800 0.1363 0.1771 0.8798
2.8443 1900 - 0.1768 0.8862
2.9940 2000 - 0.1799 0.8912
3.1437 2100 0.1276 0.1785 0.8838
3.2934 2200 - 0.1772 0.8803
3.4431 2300 - 0.1819 0.8801
3.5928 2400 0.1048 0.1763 0.8820
3.7425 2500 - 0.1782 0.8880
3.8922 2600 - 0.1784 0.8833
4.0419 2700 0.1017 0.1777 0.8885
4.1916 2800 - 0.1805 0.8901
4.3413 2900 - 0.1756 0.8911
4.4910 3000 0.0853 0.1781 0.8895
4.6407 3100 - 0.1784 0.8869
4.7904 3200 - 0.1775 0.8879
4.9401 3300 0.0854 0.1766 0.8883
5.0 3340 - - 0.8886

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.42.4
  • PyTorch: 2.3.1+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.21.0
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers and SoftmaxLoss

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
16
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for fabskill/job_and_title_siamese_binary

Evaluation results