SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("training_job_matching_sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2-2024-09-03_13-14-25")
sentences = [
"Responsable d'élevage en production ovine",
"de gestion immobilière estimer la valeur d'un bien, d'un produit droit, contentieux et négociationappliquer un cadre juridique ou réglementaire réaliser le suivi des décisions prises en assemblées de copropriété traiter des dossiers de contentieux réaliser la gestion administrative des contrats management animer, coordonner une équipe gestion des ressources humaines gérer les ressources humaines conseil, transmission assurer une médiation constructionétablir l'état d'avancement de travaux piloter la préparation de travaux planifier des travaux de rénovation définir les besoins en rénovation du patrimoine immobilier",
"de travail et risques professionnelsau domicile d'un particulier déplacements professionnels port d'équipement de protection individuel (epi) : gants, chaussures, casque, protections auditives horaires et durée du travailtravail en astreinte travail le week-end publics spécifiques particuliers secteurs d'activité • bâtiment et travaux publics (btp) 4 / 4 -",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Binary Classification
Metric |
Value |
cosine_accuracy |
0.9819 |
cosine_accuracy_threshold |
0.6798 |
cosine_f1 |
0.9734 |
cosine_f1_threshold |
0.6782 |
cosine_precision |
0.9712 |
cosine_recall |
0.9756 |
cosine_ap |
0.9778 |
dot_accuracy |
0.9799 |
dot_accuracy_threshold |
169.4876 |
dot_f1 |
0.9706 |
dot_f1_threshold |
169.4876 |
dot_precision |
0.9627 |
dot_recall |
0.9786 |
dot_ap |
0.9774 |
manhattan_accuracy |
0.9756 |
manhattan_accuracy_threshold |
160.5027 |
manhattan_f1 |
0.9638 |
manhattan_f1_threshold |
165.2382 |
manhattan_precision |
0.9673 |
manhattan_recall |
0.9603 |
manhattan_ap |
0.9782 |
euclidean_accuracy |
0.9827 |
euclidean_accuracy_threshold |
12.7983 |
euclidean_f1 |
0.9745 |
euclidean_f1_threshold |
12.8575 |
euclidean_precision |
0.9733 |
euclidean_recall |
0.9756 |
euclidean_ap |
0.9783 |
max_accuracy |
0.9827 |
max_accuracy_threshold |
169.4876 |
max_f1 |
0.9745 |
max_f1_threshold |
169.4876 |
max_precision |
0.9733 |
max_recall |
0.9786 |
max_ap |
0.9783 |
Binary Classification
Metric |
Value |
cosine_accuracy |
0.8349 |
cosine_accuracy_threshold |
0.9927 |
cosine_f1 |
0.5193 |
cosine_f1_threshold |
0.7801 |
cosine_precision |
0.4292 |
cosine_recall |
0.6573 |
cosine_ap |
0.5436 |
dot_accuracy |
0.8377 |
dot_accuracy_threshold |
247.4402 |
dot_f1 |
0.5101 |
dot_f1_threshold |
180.7264 |
dot_precision |
0.3992 |
dot_recall |
0.7063 |
dot_ap |
0.5302 |
manhattan_accuracy |
0.8363 |
manhattan_accuracy_threshold |
24.4719 |
manhattan_f1 |
0.5027 |
manhattan_f1_threshold |
122.6577 |
manhattan_precision |
0.4097 |
manhattan_recall |
0.6503 |
manhattan_ap |
0.5317 |
euclidean_accuracy |
0.8363 |
euclidean_accuracy_threshold |
1.9895 |
euclidean_f1 |
0.5251 |
euclidean_f1_threshold |
10.4537 |
euclidean_precision |
0.4372 |
euclidean_recall |
0.6573 |
euclidean_ap |
0.544 |
max_accuracy |
0.8377 |
max_accuracy_threshold |
247.4402 |
max_f1 |
0.5251 |
max_f1_threshold |
180.7264 |
max_precision |
0.4372 |
max_recall |
0.7063 |
max_ap |
0.544 |
Binary Classification
Metric |
Value |
cosine_accuracy |
0.91 |
cosine_accuracy_threshold |
0.8936 |
cosine_f1 |
0.7556 |
cosine_f1_threshold |
0.7639 |
cosine_precision |
0.8031 |
cosine_recall |
0.7133 |
cosine_ap |
0.7999 |
dot_accuracy |
0.9127 |
dot_accuracy_threshold |
227.503 |
dot_f1 |
0.7576 |
dot_f1_threshold |
227.503 |
dot_precision |
0.8264 |
dot_recall |
0.6993 |
dot_ap |
0.7881 |
manhattan_accuracy |
0.9113 |
manhattan_accuracy_threshold |
109.2699 |
manhattan_f1 |
0.7556 |
manhattan_f1_threshold |
121.613 |
manhattan_precision |
0.8031 |
manhattan_recall |
0.7133 |
manhattan_ap |
0.7969 |
euclidean_accuracy |
0.91 |
euclidean_accuracy_threshold |
7.6809 |
euclidean_f1 |
0.7556 |
euclidean_f1_threshold |
11.5803 |
euclidean_precision |
0.8031 |
euclidean_recall |
0.7133 |
euclidean_ap |
0.8007 |
max_accuracy |
0.9127 |
max_accuracy_threshold |
227.503 |
max_f1 |
0.7576 |
max_f1_threshold |
227.503 |
max_precision |
0.8264 |
max_recall |
0.7133 |
max_ap |
0.8007 |
Binary Classification
Metric |
Value |
cosine_accuracy |
0.8809 |
cosine_accuracy_threshold |
0.7636 |
cosine_f1 |
0.7021 |
cosine_f1_threshold |
0.553 |
cosine_precision |
0.6819 |
cosine_recall |
0.7236 |
cosine_ap |
0.7361 |
dot_accuracy |
0.8787 |
dot_accuracy_threshold |
217.5387 |
dot_f1 |
0.7004 |
dot_f1_threshold |
164.1041 |
dot_precision |
0.7004 |
dot_recall |
0.7004 |
dot_ap |
0.7299 |
manhattan_accuracy |
0.8782 |
manhattan_accuracy_threshold |
146.0133 |
manhattan_f1 |
0.7016 |
manhattan_f1_threshold |
180.2034 |
manhattan_precision |
0.6847 |
manhattan_recall |
0.7194 |
manhattan_ap |
0.7262 |
euclidean_accuracy |
0.8804 |
euclidean_accuracy_threshold |
13.7647 |
euclidean_f1 |
0.7046 |
euclidean_f1_threshold |
15.2429 |
euclidean_precision |
0.7046 |
euclidean_recall |
0.7046 |
euclidean_ap |
0.7391 |
max_accuracy |
0.8809 |
max_accuracy_threshold |
217.5387 |
max_f1 |
0.7046 |
max_f1_threshold |
180.2034 |
max_precision |
0.7046 |
max_recall |
0.7236 |
max_ap |
0.7391 |
Binary Classification
Metric |
Value |
cosine_accuracy |
0.9316 |
cosine_accuracy_threshold |
0.63 |
cosine_f1 |
0.8316 |
cosine_f1_threshold |
0.5285 |
cosine_precision |
0.7843 |
cosine_recall |
0.885 |
cosine_ap |
0.8867 |
dot_accuracy |
0.9293 |
dot_accuracy_threshold |
199.23 |
dot_f1 |
0.8274 |
dot_f1_threshold |
165.8962 |
dot_precision |
0.7892 |
dot_recall |
0.8695 |
dot_ap |
0.8867 |
manhattan_accuracy |
0.9289 |
manhattan_accuracy_threshold |
176.4425 |
manhattan_f1 |
0.821 |
manhattan_f1_threshold |
176.4425 |
manhattan_precision |
0.8303 |
manhattan_recall |
0.8119 |
manhattan_ap |
0.8726 |
euclidean_accuracy |
0.932 |
euclidean_accuracy_threshold |
14.7442 |
euclidean_f1 |
0.8337 |
euclidean_f1_threshold |
16.6326 |
euclidean_precision |
0.7952 |
euclidean_recall |
0.8761 |
euclidean_ap |
0.8886 |
max_accuracy |
0.932 |
max_accuracy_threshold |
199.23 |
max_f1 |
0.8337 |
max_f1_threshold |
176.4425 |
max_precision |
0.8303 |
max_recall |
0.885 |
max_ap |
0.8886 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 42,735 training samples
- Columns:
name
, fiche
, and label
- Approximate statistics based on the first 1000 samples:
|
name |
fiche |
label |
type |
string |
string |
int |
details |
- min: 3 tokens
- mean: 9.44 tokens
- max: 44 tokens
|
- min: 4 tokens
- mean: 107.63 tokens
- max: 128 tokens
|
|
- Samples:
name |
fiche |
label |
Front End Angular Developer |
communication WCF is used. The layer concept enables the reduction of dependencies (dependency injection) of the different tasks (separation of concerns). The entities are exchanged with the database via object-relational mapping (ORM) and processed using the CRUD methods. Through the consistent use of the MVVM pattern, we avoid code-behind. The user interface of the application is realized using the PRISM framework as a "Composite Application UI".Main tasks Software developerIn cooperation with a team located in Germany and respecting the software development guidelines and customers |
0 |
SCM : Administrateur des ventes |
CHEF DE PROJET CONFIRME MAÎTRISANT ANGULAR 4.SON RÔLE SERA L'ENCADREMENT D'UNE EQUIPE ET LA GESTION TOTALE DU DÉVELOPPEMENT D'UNE APPLICATION MOBILE ANDROID.ESPRIT D'ÉQUIPE OBLIGATOIRE. |
0 |
Talent Acquisition Junior |
Pilotage et suivi de toutes les activités du call center (commandes clients et interactions bénéficiaires de la carte).Assurer le calcul et le suivi des Kpi’s du call center.Veiller à la conformité des process et des procédures pour le call center.Contrôle de la prise en charge et la saisie des demandes et réclamations.Pilotage et suivi des projets de la direction clientèle.Assurer toutes demandes ou actions émanant de la Direction Clientèle.Assurer le maintien d’une bonne qualité de service.Augmenter la satisfaction |
0 |
- Loss:
SoftmaxLoss
Evaluation Dataset
Unnamed Dataset
- Size: 2,250 evaluation samples
- Columns:
name
, fiche
, and label
- Approximate statistics based on the first 1000 samples:
|
name |
fiche |
label |
type |
string |
string |
int |
details |
- min: 3 tokens
- mean: 9.31 tokens
- max: 36 tokens
|
- min: 3 tokens
- mean: 109.04 tokens
- max: 128 tokens
|
|
- Samples:
name |
fiche |
label |
1way com |
Nous somme a la recherche de Profils en Telco avec connaissance en Produit! 😃Vous avez une connaissances dans la télécommunication? Emission ou réception (orange, sfr, boygues, free..)Vous voulez travailler dans un environnement stable, accueillant et sans pression?Vous êtes passionnés? Postulez maintenant et profitez d'un salaire motivant et pleins d'avantages:- Salaire 1100 a 1300 (selon le profil)- Primes et challenges- Tickets repas- Transport assuré- Samedi dimanche off- Titularisation- Convention |
1 |
Senior Front end Web Developer |
As part of our growth in Tunis, we are looking to hire a Sénior Front-End Web Developer, who is passionate by Web Development and would like to have a career in an international company, in the Private Banking sector, within an exciting work environment.You will take part, throughout the software development life cycle (SDLC), to the requirement analysis, development and the support of different applications for private banks.You will perform AngularJS frontend development.You will integrate a highly motivated development team working on providing solutions for the private banking sector in which you will integrate the existing global |
1 |
DÉVELOPPEUR FULLSTACK RUBY ET ANGULAR |
professionnel et d'évolution de carrière.- Projets stimulants et variés.- Esprit d'équipe et culture d'entreprise positive.- Salaire compétitif et avantages sociaux attractifs.Rejoignez MCOM et contribuez à révolutionner le commerce mobile avec nous! |
0 |
- Loss:
SoftmaxLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 32
num_train_epochs
: 5
warmup_ratio
: 0.1
bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 64
per_device_eval_batch_size
: 32
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
learning_rate
: 5e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
loss |
max_ap |
0 |
0 |
- |
- |
0.6610 |
0.0673 |
300 |
0.638 |
- |
- |
0.1346 |
600 |
0.5642 |
- |
- |
0.2020 |
900 |
0.4942 |
- |
- |
0.2244 |
1000 |
- |
0.4283 |
0.7756 |
0.2693 |
1200 |
0.4323 |
- |
- |
0.3366 |
1500 |
0.3986 |
- |
- |
0.4039 |
1800 |
0.3798 |
- |
- |
0.4488 |
2000 |
- |
0.3481 |
0.8517 |
0.4713 |
2100 |
0.3532 |
- |
- |
0.5386 |
2400 |
0.3407 |
- |
- |
0.6059 |
2700 |
0.323 |
- |
- |
0.6732 |
3000 |
0.3022 |
0.2953 |
0.8899 |
0.7406 |
3300 |
0.2945 |
- |
- |
0.8079 |
3600 |
0.2864 |
- |
- |
0.8752 |
3900 |
0.2656 |
- |
- |
0.8977 |
4000 |
- |
0.2434 |
0.9199 |
0.9425 |
4200 |
0.2581 |
- |
- |
1.0099 |
4500 |
0.2486 |
- |
- |
1.0772 |
4800 |
0.2282 |
- |
- |
1.1221 |
5000 |
- |
0.2160 |
0.9248 |
1.1445 |
5100 |
0.2191 |
- |
- |
1.2118 |
5400 |
0.2113 |
- |
- |
1.2792 |
5700 |
0.2111 |
- |
- |
1.3465 |
6000 |
0.2011 |
0.1882 |
0.9339 |
1.4138 |
6300 |
0.1894 |
- |
- |
1.4811 |
6600 |
0.1814 |
- |
- |
1.5485 |
6900 |
0.1772 |
- |
- |
1.5709 |
7000 |
- |
0.1697 |
0.9409 |
1.6158 |
7200 |
0.1731 |
- |
- |
1.6831 |
7500 |
0.1707 |
- |
- |
1.7504 |
7800 |
0.163 |
- |
- |
1.7953 |
8000 |
- |
0.1497 |
0.9411 |
1.8178 |
8100 |
0.1576 |
- |
- |
1.8851 |
8400 |
0.1518 |
- |
- |
1.9524 |
8700 |
0.1447 |
- |
- |
2.0197 |
9000 |
0.142 |
0.1355 |
0.9483 |
2.0871 |
9300 |
0.1277 |
- |
- |
2.1544 |
9600 |
0.1278 |
- |
- |
2.2217 |
9900 |
0.1243 |
- |
- |
2.2442 |
10000 |
- |
0.1225 |
0.9526 |
2.2890 |
10200 |
0.1228 |
- |
- |
2.3564 |
10500 |
0.1214 |
- |
- |
2.4237 |
10800 |
0.1173 |
- |
- |
2.4686 |
11000 |
- |
0.1082 |
0.9606 |
2.4910 |
11100 |
0.1154 |
- |
- |
2.5583 |
11400 |
0.1098 |
- |
- |
2.6257 |
11700 |
0.1074 |
- |
- |
2.6930 |
12000 |
0.105 |
0.1005 |
0.9656 |
2.7603 |
12300 |
0.1042 |
- |
- |
2.8276 |
12600 |
0.0998 |
- |
- |
2.8950 |
12900 |
0.0967 |
- |
- |
2.9174 |
13000 |
- |
0.0911 |
0.9645 |
2.9623 |
13200 |
0.0977 |
- |
- |
3.0296 |
13500 |
0.0896 |
- |
- |
3.0969 |
13800 |
0.0854 |
- |
- |
3.1418 |
14000 |
- |
0.0843 |
0.9686 |
3.1643 |
14100 |
0.0848 |
- |
- |
3.2316 |
14400 |
0.0841 |
- |
- |
3.2989 |
14700 |
0.082 |
- |
- |
3.3662 |
15000 |
0.0815 |
0.0790 |
0.9711 |
3.4336 |
15300 |
0.0812 |
- |
- |
3.5009 |
15600 |
0.0799 |
- |
- |
3.5682 |
15900 |
0.0753 |
- |
- |
3.5907 |
16000 |
- |
0.0751 |
0.9725 |
3.6355 |
16200 |
0.0756 |
- |
- |
3.7029 |
16500 |
0.0737 |
- |
- |
3.7702 |
16800 |
0.0742 |
- |
- |
3.8151 |
17000 |
- |
0.0713 |
0.9750 |
3.8375 |
17100 |
0.0725 |
- |
- |
3.9048 |
17400 |
0.0721 |
- |
- |
3.9722 |
17700 |
0.0696 |
- |
- |
4.0395 |
18000 |
0.0665 |
0.0664 |
0.9746 |
4.1068 |
18300 |
0.0648 |
- |
- |
4.1741 |
18600 |
0.0636 |
- |
- |
4.2415 |
18900 |
0.0617 |
- |
- |
4.2639 |
19000 |
- |
0.0637 |
0.9757 |
4.3088 |
19200 |
0.0624 |
- |
- |
4.3761 |
19500 |
0.062 |
- |
- |
4.4434 |
19800 |
0.0609 |
- |
- |
4.4883 |
20000 |
- |
0.0608 |
0.9774 |
4.5108 |
20100 |
0.0607 |
- |
- |
4.5781 |
20400 |
0.061 |
- |
- |
4.6454 |
20700 |
0.0612 |
- |
- |
4.7127 |
21000 |
0.0598 |
0.0591 |
0.9777 |
4.7801 |
21300 |
0.0613 |
- |
- |
4.8474 |
21600 |
0.0599 |
- |
- |
4.9147 |
21900 |
0.0575 |
- |
- |
4.9372 |
22000 |
- |
0.0582 |
0.9783 |
4.9820 |
22200 |
0.0593 |
- |
- |
5.0 |
22280 |
- |
- |
0.5440 |
0.8303 |
181 |
- |
- |
0.7148 |
0.4587 |
100 |
- |
0.2849 |
0.7360 |
0.9174 |
200 |
- |
0.3019 |
0.7230 |
1.3761 |
300 |
0.2712 |
0.2813 |
0.7697 |
1.8349 |
400 |
- |
0.2667 |
0.8033 |
2.2936 |
500 |
- |
0.2673 |
0.7936 |
2.7523 |
600 |
0.2268 |
0.2518 |
0.8078 |
3.2110 |
700 |
- |
0.2539 |
0.8103 |
3.6697 |
800 |
- |
0.2662 |
0.8118 |
4.1284 |
900 |
0.1845 |
0.2688 |
0.8003 |
4.5872 |
1000 |
- |
0.2632 |
0.8081 |
0.4587 |
100 |
- |
0.2642 |
0.8101 |
0.9174 |
200 |
- |
0.2741 |
0.7995 |
1.3761 |
300 |
0.1742 |
0.2818 |
0.7861 |
1.8349 |
400 |
- |
0.2595 |
0.8146 |
2.2936 |
500 |
- |
0.2716 |
0.8021 |
2.7523 |
600 |
0.1572 |
0.2622 |
0.8013 |
3.2110 |
700 |
- |
0.2660 |
0.7985 |
3.6697 |
800 |
- |
0.2716 |
0.7986 |
4.1284 |
900 |
0.1327 |
0.2724 |
0.7942 |
4.5872 |
1000 |
- |
0.2670 |
0.8007 |
5.0 |
1090 |
- |
- |
0.5292 |
0.1497 |
100 |
- |
0.4254 |
0.5464 |
0.2994 |
200 |
- |
0.3918 |
0.5718 |
0.4491 |
300 |
0.3988 |
0.3853 |
0.5670 |
0.5988 |
400 |
- |
0.3670 |
0.5780 |
0.7485 |
500 |
- |
0.3630 |
0.5954 |
0.8982 |
600 |
0.3577 |
0.3551 |
0.6197 |
1.0479 |
700 |
- |
0.3463 |
0.6320 |
1.1976 |
800 |
- |
0.3362 |
0.6455 |
1.3473 |
900 |
0.3092 |
0.3547 |
0.6496 |
1.4970 |
1000 |
- |
0.3403 |
0.6502 |
1.6467 |
1100 |
- |
0.3418 |
0.6614 |
1.7964 |
1200 |
0.2901 |
0.3367 |
0.6781 |
1.9461 |
1300 |
- |
0.3283 |
0.6939 |
2.0958 |
1400 |
- |
0.3266 |
0.7053 |
2.2455 |
1500 |
0.2627 |
0.3275 |
0.7074 |
2.3952 |
1600 |
- |
0.3174 |
0.6976 |
2.5449 |
1700 |
- |
0.3275 |
0.7037 |
2.6946 |
1800 |
0.2319 |
0.3094 |
0.7086 |
2.8443 |
1900 |
- |
0.3184 |
0.7118 |
2.9940 |
2000 |
- |
0.3195 |
0.7076 |
3.1437 |
2100 |
0.2222 |
0.3225 |
0.7178 |
3.2934 |
2200 |
- |
0.3214 |
0.7184 |
3.4431 |
2300 |
- |
0.3170 |
0.7270 |
3.5928 |
2400 |
0.188 |
0.3236 |
0.7269 |
3.7425 |
2500 |
- |
0.3174 |
0.7345 |
3.8922 |
2600 |
- |
0.3196 |
0.7365 |
4.0419 |
2700 |
0.1877 |
0.3174 |
0.7394 |
4.1916 |
2800 |
- |
0.3195 |
0.7355 |
4.3413 |
2900 |
- |
0.3207 |
0.7373 |
4.4910 |
3000 |
0.1582 |
0.3274 |
0.7349 |
4.6407 |
3100 |
- |
0.3252 |
0.7350 |
4.7904 |
3200 |
- |
0.3210 |
0.7393 |
4.9401 |
3300 |
0.1612 |
0.3205 |
0.7386 |
5.0 |
3340 |
- |
- |
0.8142 |
0.1497 |
100 |
- |
0.2197 |
0.8248 |
0.2994 |
200 |
- |
0.2117 |
0.8303 |
0.4491 |
300 |
0.2456 |
0.2299 |
0.8156 |
0.5988 |
400 |
- |
0.2219 |
0.8113 |
0.7485 |
500 |
- |
0.2149 |
0.8231 |
0.8982 |
600 |
0.2397 |
0.2110 |
0.8354 |
1.0479 |
700 |
- |
0.2069 |
0.8479 |
1.1976 |
800 |
- |
0.2070 |
0.8465 |
1.3473 |
900 |
0.1956 |
0.2046 |
0.8445 |
1.4970 |
1000 |
- |
0.2070 |
0.8412 |
1.6467 |
1100 |
- |
0.2001 |
0.8453 |
1.7964 |
1200 |
0.185 |
0.1970 |
0.8473 |
1.9461 |
1300 |
- |
0.1904 |
0.8491 |
2.0958 |
1400 |
- |
0.1864 |
0.8691 |
2.2455 |
1500 |
0.1537 |
0.1916 |
0.8570 |
2.3952 |
1600 |
- |
0.1886 |
0.8740 |
2.5449 |
1700 |
- |
0.1827 |
0.8770 |
2.6946 |
1800 |
0.1363 |
0.1771 |
0.8798 |
2.8443 |
1900 |
- |
0.1768 |
0.8862 |
2.9940 |
2000 |
- |
0.1799 |
0.8912 |
3.1437 |
2100 |
0.1276 |
0.1785 |
0.8838 |
3.2934 |
2200 |
- |
0.1772 |
0.8803 |
3.4431 |
2300 |
- |
0.1819 |
0.8801 |
3.5928 |
2400 |
0.1048 |
0.1763 |
0.8820 |
3.7425 |
2500 |
- |
0.1782 |
0.8880 |
3.8922 |
2600 |
- |
0.1784 |
0.8833 |
4.0419 |
2700 |
0.1017 |
0.1777 |
0.8885 |
4.1916 |
2800 |
- |
0.1805 |
0.8901 |
4.3413 |
2900 |
- |
0.1756 |
0.8911 |
4.4910 |
3000 |
0.0853 |
0.1781 |
0.8895 |
4.6407 |
3100 |
- |
0.1784 |
0.8869 |
4.7904 |
3200 |
- |
0.1775 |
0.8879 |
4.9401 |
3300 |
0.0854 |
0.1766 |
0.8883 |
5.0 |
3340 |
- |
- |
0.8886 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers and SoftmaxLoss
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}