Automatic Speech Recognition
ESPnet
multilingual
audio
Edit model card

ESPnet2 ASR model

espnet/juice500ml_mls_10h_asr_ssl

This model was trained by Kwanghee Choi using mls recipe in espnet.

Demo: How to use in ESPnet2

Follow the ESPnet installation instructions if you haven't done that already.

cd espnet
git checkout 29d7cb8453486b9073f729866a8cb3d4a8c203bb
pip install -e .
cd egs2/mls/asr1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/juice500ml_mls_10h_asr_ssl

RESULTS

Environments

  • date: Fri Oct 20 23:49:47 EDT 2023
  • python version: 3.8.6 (default, Dec 17 2020, 16:57:01) [GCC 10.2.0]
  • espnet version: espnet 202308
  • pytorch version: pytorch 1.13.1+cu117
  • Git hash: 6d5c4220458adc3283838298b549f07dc6aba2ee
    • Commit date: Thu Oct 19 16:01:31 2023 -0400

exp/asr_train_asr_e_branchformer1_wavlm_lr1e-4_raw_bpe150

WER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_de_test 3394 121689 65.4 30.0 4.6 3.5 38.1 99.9
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_en_test 3769 146611 61.5 34.4 4.1 1.9 40.5 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_es_test 2385 88499 75.5 20.5 4.0 2.9 27.4 99.9
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_fr_test 2426 93167 63.1 31.9 5.0 3.0 39.9 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_it_test 1262 40847 71.9 23.6 4.5 4.2 32.3 99.8
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_nl_test 3075 127722 65.2 30.0 4.8 3.8 38.6 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_pl_test 520 17034 64.9 29.3 5.8 4.1 39.2 99.8
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_pt_test 871 31255 62.4 31.1 6.4 3.9 41.5 100.0

CER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_de_test 3394 742421 91.8 3.5 4.7 2.2 10.4 99.9
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_en_test 3769 785323 87.3 6.5 6.2 2.6 15.3 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_es_test 2385 474976 94.7 2.6 2.7 1.7 7.0 99.9
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_fr_test 2426 531607 89.5 4.4 6.2 3.0 13.6 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_it_test 1262 230831 94.9 2.2 2.9 1.8 6.9 99.8
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_nl_test 3075 698026 92.1 3.2 4.6 2.9 10.8 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_pl_test 520 111718 94.4 2.5 3.1 1.6 7.2 99.8
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_pt_test 871 178026 90.5 4.7 4.8 2.3 11.8 100.0

TER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_de_test 3394 470137 85.5 9.3 5.1 1.9 16.4 99.9
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_en_test 3769 492873 79.4 13.8 6.7 2.6 23.2 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_es_test 2385 297162 89.4 7.3 3.3 1.6 12.2 99.9
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_fr_test 2426 347607 82.4 10.5 7.1 2.9 20.5 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_it_test 1262 146439 89.2 6.8 4.0 1.8 12.6 99.8
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_nl_test 3075 438029 85.4 9.7 4.8 2.5 17.1 100.0
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_pl_test 520 82933 90.6 6.2 3.2 1.1 10.5 99.8
decode_transformer_nolm_lm_lm_train_bpe150_valid.loss.ave_asr_model_valid.acc.ave/mls_pt_test 871 116658 83.4 10.6 6.0 2.4 19.0 100.0

ASR config

expand
config: conf/train_asr_e_branchformer1_wavlm_lr1e-4.yaml
print_config: false
log_level: INFO
drop_last_iter: false
dry_run: false
iterator_type: sequence
valid_iterator_type: null
output_dir: exp/asr_train_asr_e_branchformer1_wavlm_lr1e-4_raw_bpe150
ngpu: 1
seed: 2022
num_workers: 4
num_att_plot: 3
dist_backend: nccl
dist_init_method: env://
dist_world_size: null
dist_rank: null
local_rank: 0
dist_master_addr: null
dist_master_port: null
dist_launcher: null
multiprocessing_distributed: false
unused_parameters: true
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: false
cudnn_deterministic: true
collect_stats: false
write_collected_feats: false
max_epoch: 18
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - acc
    - max
keep_nbest_models: 10
nbest_averaging_interval: 0
grad_clip: 5.0
grad_clip_type: 2.0
grad_noise: false
accum_grad: 2
no_forward_run: false
resume: true
train_dtype: float32
use_amp: true
log_interval: null
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param:
- encoder.encoders
num_iters_per_epoch: null
batch_size: 20
valid_batch_size: null
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/asr_stats_raw_bpe150/train/speech_shape
- exp/asr_stats_raw_bpe150/train/text_shape.bpe
valid_shape_file:
- exp/asr_stats_raw_bpe150/valid/speech_shape
- exp/asr_stats_raw_bpe150/valid/text_shape.bpe
batch_type: numel
valid_batch_type: null
fold_length:
- 80000
- 150
sort_in_batch: descending
shuffle_within_batch: false
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
train_data_path_and_name_and_type:
-   - dump/raw/mls_all_train/wav.scp
    - speech
    - sound
-   - dump/raw/mls_all_train/text
    - text
    - text
valid_data_path_and_name_and_type:
-   - dump/raw/mls_all_dev/wav.scp
    - speech
    - sound
-   - dump/raw/mls_all_dev/text
    - text
    - text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
    lr: 0.0001
    weight_decay: 1.0e-06
scheduler: warmuplr
scheduler_conf:
    warmup_steps: 10000
token_list:
- <blank>
- <unk>
- ▁
- s
- a
- e
- o
- i
- t
- u
- n
- l
- r
- m
- d
- g
- en
- y
- f
- ▁a
- p
- ▁p
- er
- z
- ch
- ▁de
- ▁e
- h
- ▁s
- b
- ▁w
- k
- c
- j
- re
- w
- ra
- te
- ▁o
- ar
- ▁t
- an
- ▁z
- ▁i
- ie
- ▁b
- ro
- st
- in
- ł
- or
- v
- ▁g
- 'on'
- é
- ▁di
- li
- ▁d
- ▁la
- de
- ve
- ri
- ▁que
- le
- ▁h
- ta
- ▁ma
- ''''
- ci
- ne
- ▁un
- ▁the
- va
- it
- ▁c
- ▁se
- ▁da
- nd
- ▁no
- la
- do
- ▁m
- ▁k
- ▁po
- ▁in
- ▁le
- ▁he
- ▁si
- to
- ę
- ▁do
- ▁to
- ▁ha
- ce
- ▁en
- is
- ó
- ▁me
- ur
- ▁na
- ▁mi
- ni
- ▁l
- ▁al
- da
- ▁be
- ti
- ▁ca
- me
- ▁vo
- ▁so
- ▁mo
- ą
- ▁ge
- ing
- ▁and
- ż
- q
- ś
- á
- í
- x
- ã
- à
- ü
- ć
- '-'
- ä
- ç
- è
- ß
- ê
- ö
- ñ
- ò
- ú
- ń
- ù
- â
- ô
- ì
- ź
- õ
- î
- û
- ë
- ï
- œ
- æ
- <sos/eos>
init: null
input_size: null
ctc_conf:
    dropout_rate: 0.0
    ctc_type: builtin
    reduce: true
    ignore_nan_grad: null
    zero_infinity: true
joint_net_conf: null
use_preprocessor: true
token_type: bpe
bpemodel: data/token_list/bpe_unigram150/bpe.model
non_linguistic_symbols: null
cleaner: null
g2p: null
speech_volume_normalize: null
rir_scp: null
rir_apply_prob: 1.0
noise_scp: null
noise_apply_prob: 1.0
noise_db_range: '13_15'
short_noise_thres: 0.5
aux_ctc_tasks: []
frontend: s3prl
frontend_conf:
    frontend_conf:
        upstream: wavlm_large
    download_dir: ./hub
    multilayer_feature: false
    layer: 21
    fs: 16k
specaug: specaug
specaug_conf:
    apply_time_warp: true
    time_warp_window: 5
    time_warp_mode: bicubic
    apply_freq_mask: true
    freq_mask_width_range:
    - 0
    - 27
    num_freq_mask: 2
    apply_time_mask: true
    time_mask_width_ratio_range:
    - 0.0
    - 0.05
    num_time_mask: 5
normalize: utterance_mvn
normalize_conf: {}
model: espnet
model_conf:
    ctc_weight: 0.3
    lsm_weight: 0.1
    length_normalized_loss: false
preencoder: linear
preencoder_conf:
    input_size: 1024
    output_size: 128
encoder: e_branchformer
encoder_conf:
    output_size: 256
    attention_heads: 4
    attention_layer_type: rel_selfattn
    pos_enc_layer_type: rel_pos
    rel_pos_type: latest
    cgmlp_linear_units: 1024
    cgmlp_conv_kernel: 31
    use_linear_after_conv: false
    gate_activation: identity
    num_blocks: 12
    dropout_rate: 0.1
    positional_dropout_rate: 0.1
    attention_dropout_rate: 0.1
    input_layer: conv2d2
    layer_drop_rate: 0.0
    linear_units: 1024
    positionwise_layer_type: linear
    use_ffn: true
    macaron_ffn: true
    merge_conv_kernel: 31
postencoder: null
postencoder_conf: {}
decoder: transformer
decoder_conf:
    attention_heads: 4
    linear_units: 2048
    num_blocks: 6
    dropout_rate: 0.1
    positional_dropout_rate: 0.1
    self_attention_dropout_rate: 0.1
    src_attention_dropout_rate: 0.1
preprocessor: default
preprocessor_conf: {}
required:
- output_dir
- token_list
version: '202308'
distributed: false

Citing ESPnet

@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}





or arXiv:

@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit},
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train espnet/juice500ml_mls_10h_asr_ssl