eslamxm's picture
update model card README.md
90e8920
metadata
tags:
  - summarization
  - ar
  - encoder-decoder
  - mbert
  - Abstractive Summarization
  - generated_from_trainer
datasets:
  - xlsum
model-index:
  - name: mbert2mbert-finetuned-ar-xlsum
    results: []

mbert2mbert-finetuned-ar-xlsum

This model is a fine-tuned version of on the xlsum dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 250
  • num_epochs: 8
  • label_smoothing_factor: 0.1

Training results

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0+cu113
  • Datasets 2.2.2
  • Tokenizers 0.12.1