See axolotl config
axolotl version: 0.4.1
adapter: qlora
base_model: NousResearch/CodeLlama-13b-hf
bf16: auto
chat_template: llama3
dataloader_num_workers: 6
dataset_prepared_path: null
datasets:
- data_files:
- a180dd18b7ffb015_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/a180dd18b7ffb015_train_data.json
type:
field_instruction: Product Title
field_output: Cluster Label
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping:
metric: eval_loss
mode: min
patience: 3
eval_max_new_tokens: 128
eval_steps: 20
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: error577/a5429f29-80f7-485c-a543-9045ba603ca1
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.3
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 300
micro_batch_size: 1
mlflow_experiment_name: /tmp/a180dd18b7ffb015_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 20
sequence_len: 256
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.01
wandb_entity: null
wandb_mode: online
wandb_name: 721a24c5-31d4-46e6-9490-0fe2b51f2f63
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 721a24c5-31d4-46e6-9490-0fe2b51f2f63
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
a5429f29-80f7-485c-a543-9045ba603ca1
This model is a fine-tuned version of NousResearch/CodeLlama-13b-hf on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3804
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 300
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
13.6688 | 0.0002 | 1 | 2.3448 |
4.5637 | 0.0046 | 20 | 0.7739 |
8.8237 | 0.0092 | 40 | 0.6331 |
2.3232 | 0.0138 | 60 | 0.5531 |
2.2832 | 0.0184 | 80 | 0.5347 |
15.175 | 0.0230 | 100 | 0.5304 |
2.2726 | 0.0276 | 120 | 0.4868 |
5.5539 | 0.0322 | 140 | 0.4734 |
1.9299 | 0.0368 | 160 | 0.4356 |
3.8878 | 0.0414 | 180 | 0.4370 |
15.1468 | 0.0460 | 200 | 0.4204 |
3.6995 | 0.0506 | 220 | 0.3995 |
4.0799 | 0.0552 | 240 | 0.3933 |
1.3609 | 0.0598 | 260 | 0.3841 |
3.015 | 0.0644 | 280 | 0.3807 |
5.5795 | 0.0690 | 300 | 0.3804 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for error577/a5429f29-80f7-485c-a543-9045ba603ca1
Base model
NousResearch/CodeLlama-13b-hf