Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: qlora
base_model: 01-ai/Yi-1.5-9B-Chat-16K
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 227afdb836d95568_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/227afdb836d95568_train_data.json
  type:
    field_input: level
    field_instruction: name
    field_output: text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: false
group_by_length: false
hub_model_id: error577/7efa787b-62d8-4707-86c6-c7fe1c790941
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.01
load_in_4bit: true
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 4
lora_target_linear: true
lr_scheduler: cosine
max_steps: 3
micro_batch_size: 1
mlflow_experiment_name: /tmp/227afdb836d95568_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_torch_4bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 128
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 7d046c5f-2837-45a6-a88d-f3d18615b72c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 7d046c5f-2837-45a6-a88d-f3d18615b72c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

7efa787b-62d8-4707-86c6-c7fe1c790941

This model is a fine-tuned version of 01-ai/Yi-1.5-9B-Chat-16K on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.01
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_4BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 3

Training results

Training Loss Epoch Step Validation Loss
1.8488 0.0000 1 2.0958
2.2878 0.0001 2 1.8284
1.9633 0.0001 3 3.4793

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for error577/7efa787b-62d8-4707-86c6-c7fe1c790941

Adapter
(244)
this model