AIRIC-The-Mistral / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
f44946e verified
|
raw
history blame
4.66 kB
metadata
license: mit
datasets:
  - Open-Orca/OpenOrca
  - ise-uiuc/Magicoder-Evol-Instruct-110K
  - tatsu-lab/alpaca
  - garage-bAInd/Open-Platypus
model-index:
  - name: AIRIC-The-Mistral
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 59.98
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ericpolewski/AIRIC-The-Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 82.98
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ericpolewski/AIRIC-The-Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.67
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ericpolewski/AIRIC-The-Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 48.24
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ericpolewski/AIRIC-The-Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 76.95
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ericpolewski/AIRIC-The-Mistral
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 30.86
            name: accuracy
        source:
          url: >-
            https://huggingface.co./spaces/HuggingFaceH4/open_llm_leaderboard?query=ericpolewski/AIRIC-The-Mistral
          name: Open LLM Leaderboard

This is Mistral-v0.1 and a combination of the AIRIC dataset sprinkled into the other datasets listed. Trained for 3 epochs at rank 128 until loss hit about 1.37. I noticed some "it's important to remembers" in there that I may try to scrub out but otherwise the model wasn't intentionally censored.

The intent was to create a robot that I could converse with as well as use as an assistant. If you ask it what it's up to, it'll make something up as if it actually had a life with the right parameters. Before releasing it, I mixed in a lot of OpenOrca data vs what I put out as a chatbot originally to make it more genuinely useful. Set the top_p to .98 to get the most social results.

This was the original post: https://www.reddit.com/r/LocalLLaMA/comments/154to1w/i_trained_the_65b_model_on_my_texts_so_i_can_talk/

This is how I did the data extraction: https://www.linkedin.com/pulse/how-i-trained-ai-my-text-messages-make-robot-talks-like-eric-polewski-9nu1c/

This is an instruct model trained in the Alpaca format.

5-bit exl2 available at https://huggingface.co./ericpolewski/AIRIC-The-Mistral-5.0bpw-exl2

8-bit exl2 available at https://huggingface.co./ericpolewski/AIRIC-The-Mistral-8.0bpw-exl2

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 59.95
AI2 Reasoning Challenge (25-Shot) 59.98
HellaSwag (10-Shot) 82.98
MMLU (5-Shot) 60.67
TruthfulQA (0-shot) 48.24
Winogrande (5-shot) 76.95
GSM8k (5-shot) 30.86