ner_model / README.md
erickrribeiro's picture
Model save
d2bc92a verified
|
raw
history blame
2.16 kB
metadata
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
  - generated_from_trainer
datasets:
  - __main__
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: ner_model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: __main__
          type: __main__
          config: local
          split: test
          args: local
        metrics:
          - name: Precision
            type: precision
            value: 0.5687651985949743
          - name: Recall
            type: recall
            value: 0.6082935991908683
          - name: F1
            type: f1
            value: 0.5878656705997346
          - name: Accuracy
            type: accuracy
            value: 0.7791311866764413

ner_model

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the main dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6378
  • Precision: 0.5688
  • Recall: 0.6083
  • F1: 0.5879
  • Accuracy: 0.7791

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.6703 1.0 5737 0.6732 0.5189 0.5700 0.5432 0.7605
0.5251 2.0 11474 0.6378 0.5688 0.6083 0.5879 0.7791

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.15.0