metadata
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
datasets:
- __main__
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: ner_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: __main__
type: __main__
config: local
split: test
args: local
metrics:
- name: Precision
type: precision
value: 0.5687651985949743
- name: Recall
type: recall
value: 0.6082935991908683
- name: F1
type: f1
value: 0.5878656705997346
- name: Accuracy
type: accuracy
value: 0.7791311866764413
ner_model
This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the main dataset. It achieves the following results on the evaluation set:
- Loss: 0.6378
- Precision: 0.5688
- Recall: 0.6083
- F1: 0.5879
- Accuracy: 0.7791
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.6703 | 1.0 | 5737 | 0.6732 | 0.5189 | 0.5700 | 0.5432 | 0.7605 |
0.5251 | 2.0 | 11474 | 0.6378 | 0.5688 | 0.6083 | 0.5879 | 0.7791 |
Framework versions
- Transformers 4.36.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.15.0