erickrribeiro's picture
update model card README.md
9b06654
|
raw
history blame
2.49 kB
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
datasets:
- glue-ptpt
metrics:
- accuracy
- f1
model-index:
- name: bert-base-portuguese-fine-tuned-mrpc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: glue-ptpt
type: glue-ptpt
config: mrpc
split: validation
args: mrpc
metrics:
- name: Accuracy
type: accuracy
value: 0.8504901960784313
- name: F1
type: f1
value: 0.8920353982300885
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-portuguese-fine-tuned-mrpc
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co./neuralmind/bert-base-portuguese-cased) on the glue-ptpt dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2843
- Accuracy: 0.8505
- F1: 0.8920
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| No log | 1.0 | 459 | 0.6757 | 0.8603 | 0.8966 |
| 0.2011 | 2.0 | 918 | 0.7120 | 0.8505 | 0.8897 |
| 0.1215 | 3.0 | 1377 | 0.9679 | 0.8382 | 0.8764 |
| 0.0901 | 4.0 | 1836 | 1.0548 | 0.8333 | 0.8799 |
| 0.0478 | 5.0 | 2295 | 1.3125 | 0.8260 | 0.8769 |
| 0.0312 | 6.0 | 2754 | 1.0122 | 0.8578 | 0.8953 |
| 0.0309 | 7.0 | 3213 | 1.2197 | 0.8431 | 0.8849 |
| 0.0095 | 8.0 | 3672 | 1.1705 | 0.8554 | 0.8941 |
| 0.0076 | 9.0 | 4131 | 1.3132 | 0.8480 | 0.8912 |
| 0.0014 | 10.0 | 4590 | 1.2843 | 0.8505 | 0.8920 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3