metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: whisper-tiny
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: PolyAI/minds14
type: PolyAI/minds14
config: en-US
split: train[450:]
args: en-US
metrics:
- name: Wer
type: wer
value: 0.3482880755608028
whisper-tiny
This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.6761
- Wer Ortho: 0.3516
- Wer: 0.3483
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 750
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.2012 | 4.46 | 125 | 0.5011 | 0.3714 | 0.3542 |
0.0102 | 8.93 | 250 | 0.5741 | 0.3578 | 0.3459 |
0.0013 | 13.39 | 375 | 0.6115 | 0.3498 | 0.3418 |
0.0007 | 17.86 | 500 | 0.6403 | 0.3492 | 0.3447 |
0.0005 | 22.32 | 625 | 0.6610 | 0.3510 | 0.3465 |
0.0004 | 26.79 | 750 | 0.6761 | 0.3516 | 0.3483 |
Framework versions
- Transformers 4.33.0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3