whisper-tiny / README.md
ercaronte's picture
End of training
6351dd9
|
raw
history blame
2.13 kB
metadata
license: apache-2.0
base_model: openai/whisper-tiny
tags:
  - generated_from_trainer
datasets:
  - PolyAI/minds14
metrics:
  - wer
model-index:
  - name: whisper-tiny
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: PolyAI/minds14
          type: PolyAI/minds14
          config: en-US
          split: train[450:]
          args: en-US
        metrics:
          - name: Wer
            type: wer
            value: 0.3482880755608028

whisper-tiny

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6761
  • Wer Ortho: 0.3516
  • Wer: 0.3483

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 750

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.2012 4.46 125 0.5011 0.3714 0.3542
0.0102 8.93 250 0.5741 0.3578 0.3459
0.0013 13.39 375 0.6115 0.3498 0.3418
0.0007 17.86 500 0.6403 0.3492 0.3447
0.0005 22.32 625 0.6610 0.3510 0.3465
0.0004 26.79 750 0.6761 0.3516 0.3483

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.13.3