Edit model card

Whisper Large v3 Fine-Tuned Finnish

This model is a fine-tuned version of openai/whisper-large-v3 on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3108
  • Wer: 24.2868

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 800
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7157 0.21 50 0.4892 42.8216
0.6314 0.42 100 0.6716 58.7153
0.6187 0.63 150 0.5979 47.1195
0.5396 0.84 200 0.5503 45.8126
0.4857 1.05 250 0.5842 42.9873
0.246 1.26 300 0.5526 43.8984
0.2635 1.47 350 0.4893 39.4994
0.2346 1.68 400 0.4657 36.8489
0.2268 1.89 450 0.4163 34.5113
0.1345 2.11 500 0.4152 30.9590
0.0862 2.32 550 0.4157 32.6063
0.0723 2.53 600 0.3942 29.5785
0.0667 2.74 650 0.3654 28.3913
0.0571 2.95 700 0.3235 25.8513
0.0241 3.16 750 0.3109 25.0874
0.0124 3.37 800 0.3108 24.2868

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for enakilci/whisper-large-v3-fi-800steps-8batch-2grad_steps-0.0001lr

Finetuned
(297)
this model

Dataset used to train enakilci/whisper-large-v3-fi-800steps-8batch-2grad_steps-0.0001lr

Evaluation results