|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnn_dailymail |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-cnndm |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: cnn_dailymail |
|
type: cnn_dailymail |
|
config: 3.0.0 |
|
split: test |
|
args: 3.0.0 |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 25.0336 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-cnndm |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the cnn_dailymail dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.5802 |
|
- Rouge1: 25.0336 |
|
- Rouge2: 12.5344 |
|
- Rougel: 20.8721 |
|
- Rougelsum: 23.5806 |
|
- Gen Len: 19.9998 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.845 | 1.0 | 8972 | 1.6461 | 24.8325 | 12.327 | 20.6952 | 23.3653 | 19.9998 | |
|
| 1.7427 | 2.0 | 17945 | 1.6098 | 24.9118 | 12.4577 | 20.786 | 23.4624 | 19.9998 | |
|
| 1.6727 | 3.0 | 26917 | 1.5881 | 24.9723 | 12.4738 | 20.8317 | 23.5195 | 19.9994 | |
|
| 1.6288 | 4.0 | 35888 | 1.5802 | 25.0336 | 12.5344 | 20.8721 | 23.5806 | 19.9998 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.27.1 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.3 |
|
|