bart-base-cnndm / README.md
emonty777's picture
update model card README.md
26ea43c
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- cnn_dailymail
metrics:
- rouge
model-index:
- name: bart-base-cnndm
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: cnn_dailymail
type: cnn_dailymail
config: 3.0.0
split: test
args: 3.0.0
metrics:
- name: Rouge1
type: rouge
value: 25.0336
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-cnndm
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co./facebook/bart-base) on the cnn_dailymail dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5802
- Rouge1: 25.0336
- Rouge2: 12.5344
- Rougel: 20.8721
- Rougelsum: 23.5806
- Gen Len: 19.9998
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.845 | 1.0 | 8972 | 1.6461 | 24.8325 | 12.327 | 20.6952 | 23.3653 | 19.9998 |
| 1.7427 | 2.0 | 17945 | 1.6098 | 24.9118 | 12.4577 | 20.786 | 23.4624 | 19.9998 |
| 1.6727 | 3.0 | 26917 | 1.5881 | 24.9723 | 12.4738 | 20.8317 | 23.5195 | 19.9994 |
| 1.6288 | 4.0 | 35888 | 1.5802 | 25.0336 | 12.5344 | 20.8721 | 23.5806 | 19.9998 |
### Framework versions
- Transformers 4.27.1
- Pytorch 2.0.1+cu118
- Datasets 2.9.0
- Tokenizers 0.13.3