Llama-3-ELYZA-JP-8B-AWQ

Llama-3-ELYZA-JP-8B-image

Model Description

Llama-3-ELYZA-JP-8B is a large language model trained by ELYZA, Inc. Based on meta-llama/Meta-Llama-3-8B-Instruct, it has been enhanced for Japanese usage through additional pre-training and instruction tuning. (Built with Meta Llama3)

For more details, please refer to our blog post.

Quantization

We have prepared two quantized model options, GGUF and AWQ. This is the AutoAWQ model.

The following table shows the performance degradation due to quantization:

Model ELYZA-tasks-100 GPT4 score
Llama-3-ELYZA-JP-8B 3.655
Llama-3-ELYZA-JP-8B-GGUF (Q4_K_M) 3.57
Llama-3-ELYZA-JP-8B-AWQ 3.39

Use with vLLM

Install vLLM:

pip install vllm

vLLM Offline Batched Inference

from vllm import LLM, SamplingParams

llm = LLM(model="elyza/Llama-3-ELYZA-JP-8B-AWQ", quantization="awq")
tokenizer = llm.get_tokenizer()

DEFAULT_SYSTEM_PROMPT = "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。"
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=1000)
messages_batch = [
    [
        {"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
        {"role": "user", "content": "古代ギリシャを学ぶ上で知っておくべきポイントは?"}
    ],
    [
        {"role": "system", "content": DEFAULT_SYSTEM_PROMPT},
        {"role": "user", "content": "クマが海辺に行ってアザラシと友達になり、最終的には家に帰るというプロットの短編小説を書いてください。"}
    ]
]

prompts = [
    tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    for messages in messages_batch
]

outputs = llm.generate(prompts, sampling_params)

# Print the outputs.
for output in outputs:
    print(output.outputs[0].text)
    print("=" * 50)

vLLM OpenAI Compatible Server

Start the API server:

python -m vllm.entrypoints.openai.api_server \
--model elyza/Llama-3-ELYZA-JP-8B-AWQ \
--port 8000 \
--host localhost \
--quantization awq

Call the API using curl:

curl http://localhost:8000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
  "model": "elyza/Llama-3-ELYZA-JP-8B-AWQ",
  "messages": [
    { "role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。" },
    { "role": "user", "content": "古代ギリシャを学ぶ上で知っておくべきポイントは?" }
  ],
  "temperature": 0.6,
  "max_tokens": 1000,
  "stream": false
}'

Call the API using Python:

import openai

client = openai.OpenAI(
    base_url="http://localhost:8000/v1",
    api_key = "dummy_api_key"
)

completion = client.chat.completions.create(
    model="elyza/Llama-3-ELYZA-JP-8B-AWQ",
    messages=[
        {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。特に指示が無い場合は、常に日本語で回答してください。"},
        {"role": "user", "content": "古代ギリシャを学ぶ上で知っておくべきポイントは?"}
    ]
)

Developers

Listed in alphabetical order.

License

Meta Llama 3 Community License

How to Cite

@misc{elyzallama2024,
      title={elyza/Llama-3-ELYZA-JP-8B},
      url={https://huggingface.co./elyza/Llama-3-ELYZA-JP-8B},
      author={Masato Hirakawa and Shintaro Horie and Tomoaki Nakamura and Daisuke Oba and Sam Passaglia and Akira Sasaki},
      year={2024},
}

Citations

@article{llama3modelcard,
    title={Llama 3 Model Card},
    author={AI@Meta},
    year={2024},
    url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
Downloads last month
1,590
Safetensors
Model size
1.98B params
Tensor type
I32
·
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including elyza/Llama-3-ELYZA-JP-8B-AWQ