eglkan1's picture
End of training
56c5c9a verified
|
raw
history blame
2.88 kB
---
license: apache-2.0
base_model: google/mt5-base
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mT5-TextSimp-LT-BatchSize12-lr1e-4
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mT5-TextSimp-LT-BatchSize12-lr1e-4
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co./google/mt5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1611
- Rouge1: 0.4599
- Rouge2: 0.2777
- Rougel: 0.4471
- Gen Len: 39.0358
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:--------:|
| 36.6446 | 0.48 | 200 | 31.2765 | 0.0004 | 0.0 | 0.0004 | 512.0 |
| 11.5223 | 0.96 | 400 | 6.7786 | 0.003 | 0.0 | 0.0031 | 89.2816 |
| 2.2686 | 1.44 | 600 | 0.6729 | 0.0053 | 0.0 | 0.0053 | 39.0501 |
| 0.7009 | 1.91 | 800 | 0.6529 | 0.0029 | 0.0 | 0.0027 | 41.401 |
| 0.6213 | 2.39 | 1000 | 0.5630 | 0.0057 | 0.0002 | 0.0056 | 39.0334 |
| 0.6435 | 2.87 | 1200 | 0.4697 | 0.0685 | 0.0084 | 0.0611 | 39.0453 |
| 0.4154 | 3.35 | 1400 | 10.4655 | 0.2093 | 0.1217 | 0.2006 | 350.0334 |
| 0.6289 | 3.83 | 1600 | 1.9257 | 0.317 | 0.1946 | 0.3064 | 138.7494 |
| 3.5542 | 4.31 | 1800 | 0.8459 | 0.3735 | 0.204 | 0.3613 | 59.8568 |
| 8.1736 | 4.78 | 2000 | 7.2350 | 0.3144 | 0.1819 | 0.3037 | 289.1432 |
| 2.3987 | 5.26 | 2200 | 0.8361 | 0.3621 | 0.1911 | 0.351 | 61.0668 |
| 0.9853 | 5.74 | 2400 | 0.4219 | 0.3634 | 0.2008 | 0.352 | 46.494 |
| 0.3575 | 6.22 | 2600 | 0.3516 | 0.3805 | 0.2128 | 0.3689 | 46.1623 |
| 0.4497 | 6.7 | 2800 | 0.2597 | 0.4388 | 0.2698 | 0.4269 | 42.2697 |
| 0.2582 | 7.18 | 3000 | 0.1583 | 0.4444 | 0.2587 | 0.4316 | 38.1671 |
| 0.2629 | 7.66 | 3200 | 0.1611 | 0.4599 | 0.2777 | 0.4471 | 39.0358 |
### Framework versions
- Transformers 4.33.0
- Pytorch 2.1.2+cu121
- Datasets 2.14.4
- Tokenizers 0.13.3