resnet50_cifar10 / README.md
edadaltocg's picture
Upload README.md with huggingface_hub
604e1c3
metadata
language: en
license: mit
library_name: timm
tags:
  - image-classification
  - resnet50
  - cifar10
datasets: cifar10
metrics:
  - accuracy
model-index:
  - name: resnet50_cifar10
    results:
      - task:
          type: image-classification
        dataset:
          name: CIFAR-10
          type: cifar10
        metrics:
          - type: accuracy
            value: 0.9465

Model Card for Model ID

This model is a small resnet50 trained on cifar10.

  • Test Accuracy: 0.9465
  • License: MIT

How to Get Started with the Model

Use the code below to get started with the model.

import detectors
import timm

model = timm.create_model("resnet50_cifar10", pretrained=True)

Training Data

Training data is cifar10.

Training Hyperparameters

  • config: scripts/train_configs/cifar10.json

  • model: resnet50_cifar10

  • dataset: cifar10

  • batch_size: 128

  • epochs: 300

  • validation_frequency: 5

  • seed: 1

  • criterion: CrossEntropyLoss

  • criterion_kwargs: {}

  • optimizer: SGD

  • lr: 0.1

  • optimizer_kwargs: {'momentum': 0.9, 'weight_decay': 0.0005, 'nesterov': 'True'}

  • scheduler: ReduceLROnPlateau

  • scheduler_kwargs: {'factor': 0.1, 'patience': 3, 'threshold': 0.001, 'mode': 'max'}

  • debug: False

Testing Data

Testing data is cifar10.


This model card was created by Eduardo Dadalto.