h1
This model is a fine-tuned version of distilgpt2 on hearthstone dataset. GitHub repo. It achieves the following results on the evaluation set:
- Loss: 0.0890
- Exact Match: 0.1970
- Bleu: 0.9737
- Codebleu: 0.9172
- Ngram Match Score: 0.8984
- Weighted Ngram Match Score: 0.8985
- Syntax Match Score: 0.9293
- Dataflow Match Score: 0.9429
- Chrf: 97.5313
Model description
DistilGPT2 applied onto HearthStone dataset with preprocessing of python code to dumped AST. Example:
#gold labels
Module([ClassDef('Innervate', [Name('SpellCard', Load())], [], [FunctionDef('__init__', arguments([], [arg('self', None, None)], None, [], [], None, []), [Expr(Call(Attribute(Call(Name('super', Load()), [], []), '__init__', Load()), [Constant('Innervate', None), Constant(0, None), Attribute(Name('CHARACTER_CLASS', Load()), 'DRUID', Load()), Attribute(Name('CARD_RARITY', Load()), 'FREE', Load())], []))], [], None, None), FunctionDef('use', arguments([], [arg('self', None, None), arg('player', None, None), arg('game', None, None)], None, [], [], None, []), [Expr(Call(Attribute(Call(Name('super', Load()), [], []), 'use', Load()), [Name('player', Load()), Name('game', Load())], [])), If(Compare(Attribute(Name('player', Load()),'mana', Load()), [Lt()], [Constant(8, None)]), [AugAssign(Attribute(Name('player', Load()),'mana', Store()), Add(), Constant(2, None))], [Assign([Attribute(Name('player', Load()),'mana', Store())], Constant(10, None), None)])], [], None, None)], [])], [])
#wrong prediction (example of error after training)
Module([ClassDef('Innervate', [Name('SpellCard', Load())], [], [FunctionDef('__init__', arguments([], [arg('self', None, None)], None, [], [], None, []), [Expr(Call(Attribute(Call(Name('super', Load()), [], []), '__init__', Load()), [Constant('Innervate', None), Constant(0, None), Attribute(Name('CHARACTER_CLASS', Load()), 'DRUID', Load()), Attribute(Name('CARD_RARITY', Load()), 'FREE', Load())], []))], [], None, None), FunctionDef('use', arguments([], [arg('self', None, None), arg('player', None, None), arg('game', None, None)], None, [], [], None, []), [Expr(Call(Attribute(Call(Name('super', Load()), [], []), 'use', Load()), [Name('player', Load()), Name('game', Load())], [])), For(Compare(Attribute(Name('player', Load()),'maxa', Load()), [Lt()], [Constant(10, None)]), [AugAssign(Attribute(Name('player', Load()),'mana', Store()), Add(), Constant(2, None))], Exign([Name(Name('player', Load()),'mana', Store())], Constant(None, None), None)],], [], None, None)], [])], [])
Intended uses & limitations
HearthStone card code synthesis.
Training and evaluation data
See split of hearthstone dataset
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 17
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Exact Match | Bleu | Codebleu | Ngram Match Score | Weighted Ngram Match Score | Syntax Match Score | Dataflow Match Score | Chrf |
---|---|---|---|---|---|---|---|---|---|---|---|
0.3871 | 11.94 | 1600 | 0.1043 | 0.0152 | 0.9499 | 0.8549 | 0.8089 | 0.8089 | 0.8653 | 0.9366 | 95.4674 |
0.0752 | 23.88 | 3200 | 0.0784 | 0.1212 | 0.9640 | 0.8874 | 0.8525 | 0.8526 | 0.8929 | 0.9516 | 96.7978 |
0.0448 | 35.82 | 4800 | 0.0717 | 0.1364 | 0.9693 | 0.9077 | 0.8782 | 0.8782 | 0.9069 | 0.9674 | 97.2100 |
0.0308 | 47.76 | 6400 | 0.0752 | 0.1364 | 0.9702 | 0.9061 | 0.8808 | 0.8810 | 0.9070 | 0.9554 | 97.1896 |
0.0223 | 59.7 | 8000 | 0.0762 | 0.1364 | 0.9724 | 0.9050 | 0.8877 | 0.8881 | 0.9093 | 0.9348 | 97.4616 |
0.0166 | 71.64 | 9600 | 0.0762 | 0.1667 | 0.9733 | 0.9140 | 0.8948 | 0.8951 | 0.9197 | 0.9461 | 97.4945 |
0.0128 | 83.58 | 11200 | 0.0793 | 0.1515 | 0.9728 | 0.9085 | 0.8911 | 0.8918 | 0.9189 | 0.9321 | 97.4152 |
0.0104 | 95.52 | 12800 | 0.0822 | 0.1667 | 0.9732 | 0.9165 | 0.8946 | 0.8950 | 0.9222 | 0.9541 | 97.4887 |
0.0084 | 107.46 | 14400 | 0.0832 | 0.1667 | 0.9737 | 0.9167 | 0.8970 | 0.8972 | 0.9254 | 0.9471 | 97.5326 |
0.007 | 119.4 | 16000 | 0.0837 | 0.1818 | 0.9743 | 0.9160 | 0.8983 | 0.8986 | 0.9238 | 0.9434 | 97.6638 |
0.0058 | 131.34 | 17600 | 0.0858 | 0.1818 | 0.9739 | 0.9200 | 0.8977 | 0.8977 | 0.9267 | 0.9579 | 97.5583 |
0.005 | 143.28 | 19200 | 0.0878 | 0.1818 | 0.9743 | 0.9180 | 0.8993 | 0.9001 | 0.9301 | 0.9426 | 97.5819 |
0.0044 | 155.22 | 20800 | 0.0877 | 0.1667 | 0.9736 | 0.9156 | 0.8957 | 0.8960 | 0.9278 | 0.9429 | 97.5109 |
0.0042 | 167.16 | 22400 | 0.0890 | 0.1970 | 0.9736 | 0.9171 | 0.8984 | 0.8984 | 0.9293 | 0.9424 | 97.5617 |
0.0038 | 179.1 | 24000 | 0.0891 | 0.2121 | 0.9738 | 0.9174 | 0.8991 | 0.8991 | 0.9285 | 0.9429 | 97.5452 |
0.0037 | 191.04 | 25600 | 0.0890 | 0.1970 | 0.9737 | 0.9172 | 0.8984 | 0.8985 | 0.9293 | 0.9429 | 97.5313 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0
- Datasets 2.6.1
- Tokenizers 0.13.1
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train dvitel/h1
Evaluation results
- Exact Match on HearthStonetest set self-reported0.212
- BLEU on HearthStonetest set self-reported0.964
- CodeBLEU on HearthStonetest set self-reported0.888
- chrF on HearthStonetest set self-reported96.594