使用 torch.compile() 优化推理
本指南旨在为使用torch.compile()
在🤗 Transformers中的计算机视觉模型中引入的推理速度提升提供一个基准。
torch.compile 的优势
根据模型和GPU的不同,torch.compile()
在推理过程中可以提高多达30%的速度。要使用torch.compile()
,只需安装2.0及以上版本的torch
即可。
编译模型需要时间,因此如果您只需要编译一次模型而不是每次推理都编译,那么它非常有用。
要编译您选择的任何计算机视觉模型,请按照以下方式调用torch.compile()
:
from transformers import AutoModelForImageClassification
model = AutoModelForImageClassification.from_pretrained(MODEL_ID).to("cuda")
+ model = torch.compile(model)
compile()
提供了多种编译模式,它们在编译时间和推理开销上有所不同。max-autotune
比 reduce-overhead
需要更长的时间,但会得到更快的推理速度。默认模式在编译时最快,但在推理时间上与 reduce-overhead
相比效率较低。在本指南中,我们使用了默认模式。您可以在这里了解更多信息。
我们在 PyTorch 2.0.1 版本上使用不同的计算机视觉模型、任务、硬件类型和数据批量大小对 torch.compile
进行了基准测试。
基准测试代码
以下是每个任务的基准测试代码。我们在推理之前”预热“GPU,并取300次推理的平均值,每次使用相同的图像。
使用 ViT 进行图像分类
import torch
from PIL import Image
import requests
import numpy as np
from transformers import AutoImageProcessor, AutoModelForImageClassification
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224").to("cuda")
model = torch.compile(model)
processed_input = processor(image, return_tensors='pt').to(device="cuda")
with torch.no_grad():
_ = model(**processed_input)
使用 DETR 进行目标检测
from transformers import AutoImageProcessor, AutoModelForObjectDetection
processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50").to("cuda")
model = torch.compile(model)
texts = ["a photo of a cat", "a photo of a dog"]
inputs = processor(text=texts, images=image, return_tensors="pt").to("cuda")
with torch.no_grad():
_ = model(**inputs)
使用 Segformer 进行图像分割
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to("cuda")
model = torch.compile(model)
seg_inputs = processor(images=image, return_tensors="pt").to("cuda")
with torch.no_grad():
_ = model(**seg_inputs)
以下是我们进行基准测试的模型列表。
图像分类
- google/vit-base-patch16-224
- microsoft/beit-base-patch16-224-pt22k-ft22k
- facebook/convnext-large-224
- microsoft/resnet-50
图像分割
- nvidia/segformer-b0-finetuned-ade-512-512
- facebook/mask2former-swin-tiny-coco-panoptic
- facebook/maskformer-swin-base-ade
- google/deeplabv3_mobilenet_v2_1.0_513
目标检测
microsoft/conditional-detr-resnet-50
下面是使用和不使用
torch.compile()
的推理持续时间可视化,以及每个模型在不同硬件和数据批量大小下的改进百分比。
下面可以找到每个模型使用和不使用compile()
的推理时间(毫秒)。请注意,OwlViT在大批量大小下会导致内存溢出。
A100 (batch size: 1)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 9.325 | 7.584 |
Image Segmentation/Segformer | 11.759 | 10.500 |
Object Detection/OwlViT | 24.978 | 18.420 |
Image Classification/BeiT | 11.282 | 8.448 |
Object Detection/DETR | 34.619 | 19.040 |
Image Classification/ConvNeXT | 10.410 | 10.208 |
Image Classification/ResNet | 6.531 | 4.124 |
Image Segmentation/Mask2former | 60.188 | 49.117 |
Image Segmentation/Maskformer | 75.764 | 59.487 |
Image Segmentation/MobileNet | 8.583 | 3.974 |
Object Detection/Resnet-101 | 36.276 | 18.197 |
Object Detection/Conditional-DETR | 31.219 | 17.993 |
A100 (batch size: 4)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 14.832 | 14.499 |
Image Segmentation/Segformer | 18.838 | 16.476 |
Image Classification/BeiT | 13.205 | 13.048 |
Object Detection/DETR | 48.657 | 32.418 |
Image Classification/ConvNeXT | 22.940 | 21.631 |
Image Classification/ResNet | 6.657 | 4.268 |
Image Segmentation/Mask2former | 74.277 | 61.781 |
Image Segmentation/Maskformer | 180.700 | 159.116 |
Image Segmentation/MobileNet | 14.174 | 8.515 |
Object Detection/Resnet-101 | 68.101 | 44.998 |
Object Detection/Conditional-DETR | 56.470 | 35.552 |
A100 (batch size: 16)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 40.944 | 40.010 |
Image Segmentation/Segformer | 37.005 | 31.144 |
Image Classification/BeiT | 41.854 | 41.048 |
Object Detection/DETR | 164.382 | 161.902 |
Image Classification/ConvNeXT | 82.258 | 75.561 |
Image Classification/ResNet | 7.018 | 5.024 |
Image Segmentation/Mask2former | 178.945 | 154.814 |
Image Segmentation/Maskformer | 638.570 | 579.826 |
Image Segmentation/MobileNet | 51.693 | 30.310 |
Object Detection/Resnet-101 | 232.887 | 155.021 |
Object Detection/Conditional-DETR | 180.491 | 124.032 |
V100 (batch size: 1)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 10.495 | 6.00 |
Image Segmentation/Segformer | 13.321 | 5.862 |
Object Detection/OwlViT | 25.769 | 22.395 |
Image Classification/BeiT | 11.347 | 7.234 |
Object Detection/DETR | 33.951 | 19.388 |
Image Classification/ConvNeXT | 11.623 | 10.412 |
Image Classification/ResNet | 6.484 | 3.820 |
Image Segmentation/Mask2former | 64.640 | 49.873 |
Image Segmentation/Maskformer | 95.532 | 72.207 |
Image Segmentation/MobileNet | 9.217 | 4.753 |
Object Detection/Resnet-101 | 52.818 | 28.367 |
Object Detection/Conditional-DETR | 39.512 | 20.816 |
V100 (batch size: 4)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 15.181 | 14.501 |
Image Segmentation/Segformer | 16.787 | 16.188 |
Image Classification/BeiT | 15.171 | 14.753 |
Object Detection/DETR | 88.529 | 64.195 |
Image Classification/ConvNeXT | 29.574 | 27.085 |
Image Classification/ResNet | 6.109 | 4.731 |
Image Segmentation/Mask2former | 90.402 | 76.926 |
Image Segmentation/Maskformer | 234.261 | 205.456 |
Image Segmentation/MobileNet | 24.623 | 14.816 |
Object Detection/Resnet-101 | 134.672 | 101.304 |
Object Detection/Conditional-DETR | 97.464 | 69.739 |
V100 (batch size: 16)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 52.209 | 51.633 |
Image Segmentation/Segformer | 61.013 | 55.499 |
Image Classification/BeiT | 53.938 | 53.581 |
Object Detection/DETR | OOM | OOM |
Image Classification/ConvNeXT | 109.682 | 100.771 |
Image Classification/ResNet | 14.857 | 12.089 |
Image Segmentation/Mask2former | 249.605 | 222.801 |
Image Segmentation/Maskformer | 831.142 | 743.645 |
Image Segmentation/MobileNet | 93.129 | 55.365 |
Object Detection/Resnet-101 | 482.425 | 361.843 |
Object Detection/Conditional-DETR | 344.661 | 255.298 |
T4 (batch size: 1)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 16.520 | 15.786 |
Image Segmentation/Segformer | 16.116 | 14.205 |
Object Detection/OwlViT | 53.634 | 51.105 |
Image Classification/BeiT | 16.464 | 15.710 |
Object Detection/DETR | 73.100 | 53.99 |
Image Classification/ConvNeXT | 32.932 | 30.845 |
Image Classification/ResNet | 6.031 | 4.321 |
Image Segmentation/Mask2former | 79.192 | 66.815 |
Image Segmentation/Maskformer | 200.026 | 188.268 |
Image Segmentation/MobileNet | 18.908 | 11.997 |
Object Detection/Resnet-101 | 106.622 | 82.566 |
Object Detection/Conditional-DETR | 77.594 | 56.984 |
T4 (batch size: 4)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 43.653 | 43.626 |
Image Segmentation/Segformer | 45.327 | 42.445 |
Image Classification/BeiT | 52.007 | 51.354 |
Object Detection/DETR | 277.850 | 268.003 |
Image Classification/ConvNeXT | 119.259 | 105.580 |
Image Classification/ResNet | 13.039 | 11.388 |
Image Segmentation/Mask2former | 201.540 | 184.670 |
Image Segmentation/Maskformer | 764.052 | 711.280 |
Image Segmentation/MobileNet | 74.289 | 48.677 |
Object Detection/Resnet-101 | 421.859 | 357.614 |
Object Detection/Conditional-DETR | 289.002 | 226.945 |
T4 (batch size: 16)
Task/Model | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|
Image Classification/ViT | 163.914 | 160.907 |
Image Segmentation/Segformer | 192.412 | 163.620 |
Image Classification/BeiT | 188.978 | 187.976 |
Object Detection/DETR | OOM | OOM |
Image Classification/ConvNeXT | 422.886 | 388.078 |
Image Classification/ResNet | 44.114 | 37.604 |
Image Segmentation/Mask2former | 756.337 | 695.291 |
Image Segmentation/Maskformer | 2842.940 | 2656.88 |
Image Segmentation/MobileNet | 299.003 | 201.942 |
Object Detection/Resnet-101 | 1619.505 | 1262.758 |
Object Detection/Conditional-DETR | 1137.513 | 897.390 |
PyTorch Nightly
我们还在 PyTorch Nightly 版本(2.1.0dev)上进行了基准测试,可以在这里找到 Nightly 版本的安装包,并观察到了未编译和编译模型的延迟性能改善。
A100
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/BeiT | Unbatched | 12.462 | 6.954 |
Image Classification/BeiT | 4 | 14.109 | 12.851 |
Image Classification/BeiT | 16 | 42.179 | 42.147 |
Object Detection/DETR | Unbatched | 30.484 | 15.221 |
Object Detection/DETR | 4 | 46.816 | 30.942 |
Object Detection/DETR | 16 | 163.749 | 163.706 |
T4
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/BeiT | Unbatched | 14.408 | 14.052 |
Image Classification/BeiT | 4 | 47.381 | 46.604 |
Image Classification/BeiT | 16 | 42.179 | 42.147 |
Object Detection/DETR | Unbatched | 68.382 | 53.481 |
Object Detection/DETR | 4 | 269.615 | 204.785 |
Object Detection/DETR | 16 | OOM | OOM |
V100
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/BeiT | Unbatched | 13.477 | 7.926 |
Image Classification/BeiT | 4 | 15.103 | 14.378 |
Image Classification/BeiT | 16 | 52.517 | 51.691 |
Object Detection/DETR | Unbatched | 28.706 | 19.077 |
Object Detection/DETR | 4 | 88.402 | 62.949 |
Object Detection/DETR | 16 | OOM | OOM |
降低开销
我们在 PyTorch Nightly 版本中为 A100 和 T4 进行了 reduce-overhead
编译模式的性能基准测试。
A100
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/ConvNeXT | Unbatched | 11.758 | 7.335 |
Image Classification/ConvNeXT | 4 | 23.171 | 21.490 |
Image Classification/ResNet | Unbatched | 7.435 | 3.801 |
Image Classification/ResNet | 4 | 7.261 | 2.187 |
Object Detection/Conditional-DETR | Unbatched | 32.823 | 11.627 |
Object Detection/Conditional-DETR | 4 | 50.622 | 33.831 |
Image Segmentation/MobileNet | Unbatched | 9.869 | 4.244 |
Image Segmentation/MobileNet | 4 | 14.385 | 7.946 |
T4
Task/Model | Batch Size | torch 2.0 - no compile | torch 2.0 - compile |
---|---|---|---|
Image Classification/ConvNeXT | Unbatched | 32.137 | 31.84 |
Image Classification/ConvNeXT | 4 | 120.944 | 110.209 |
Image Classification/ResNet | Unbatched | 9.761 | 7.698 |
Image Classification/ResNet | 4 | 15.215 | 13.871 |
Object Detection/Conditional-DETR | Unbatched | 72.150 | 57.660 |
Object Detection/Conditional-DETR | 4 | 301.494 | 247.543 |
Image Segmentation/MobileNet | Unbatched | 22.266 | 19.339 |
Image Segmentation/MobileNet | 4 | 78.311 | 50.983 |