Callbacks
Callbacks可以用来自定义PyTorch [Trainer]中训练循环行为的对象(此功能尚未在TensorFlow中实现),该对象可以检查训练循环状态(用于进度报告、在TensorBoard或其他ML平台上记录日志等),并做出决策(例如提前停止)。
Callbacks是“只读”的代码片段,除了它们返回的[TrainerControl]对象外,它们不能更改训练循环中的任何内容。对于需要更改训练循环的自定义,您应该继承[Trainer]并重载您需要的方法(有关示例,请参见trainer)。
默认情况下,TrainingArguments.report_to
设置为”all”,然后[Trainer]将使用以下callbacks。
- DefaultFlowCallback,它处理默认的日志记录、保存和评估行为
- PrinterCallback 或 ProgressCallback,用于显示进度和打印日志(如果通过
TrainingArguments
停用tqdm,则使用第一个函数;否则使用第二个)。 - TensorBoardCallback,如果TensorBoard可访问(通过PyTorch版本 >= 1.4 或者 tensorboardX)。
- WandbCallback,如果安装了wandb。
- CometCallback,如果安装了comet_ml。
- MLflowCallback,如果安装了mlflow。
- NeptuneCallback,如果安装了neptune。
- AzureMLCallback,如果安装了azureml-sdk。
- CodeCarbonCallback,如果安装了codecarbon。
- ClearMLCallback,如果安装了clearml。
- DagsHubCallback,如果安装了dagshub。
- FlyteCallback,如果安装了flyte。
- DVCLiveCallback,如果安装了dvclive。
如果安装了一个软件包,但您不希望使用相关的集成,您可以将 TrainingArguments.report_to
更改为仅包含您想要使用的集成的列表(例如 ["azure_ml", "wandb"]
)。
实现callbacks的主要类是TrainerCallback。它获取用于实例化Trainer
的TrainingArguments
,可以通过TrainerState访问该Trainer的内部状态,并可以通过TrainerControl对训练循环执行一些操作。
可用的Callbacks
这里是库里可用TrainerCallback的列表:
A TrainerCallback that sends the logs to Comet ML.
Setup the optional Comet integration.
Environment:
- COMET_MODE (
str
, optional, default toget_or_create
): Control whether to create and log to a new Comet experiment or append to an existing experiment. It accepts the following values:get_or_create
: Decides automatically depending ifCOMET_EXPERIMENT_KEY
is set and whether an Experiment with that key already exists or not.create
: Always create a new Comet Experiment.get
: Always try to append to an Existing Comet Experiment. RequiresCOMET_EXPERIMENT_KEY
to be set.ONLINE
: deprecated, used to create an online Experiment. UseCOMET_START_ONLINE=1
instead.OFFLINE
: deprecated, used to created an offline Experiment. UseCOMET_START_ONLINE=0
instead.DISABLED
: deprecated, used to disable Comet logging. Use the--report_to
flag to control the integrations used for logging result instead.
- COMET_PROJECT_NAME (
str
, optional): Comet project name for experiments. - COMET_LOG_ASSETS (
str
, optional, defaults toTRUE
): Whether or not to log training assets (tf event logs, checkpoints, etc), to Comet. Can beTRUE
, orFALSE
.
For a number of configurable items in the environment, see here.
A TrainerCallback that handles the default flow of the training loop for logs, evaluation and checkpoints.
A bare TrainerCallback that just prints the logs.
A TrainerCallback that displays the progress of training or evaluation.
class transformers.EarlyStoppingCallback
< source >( early_stopping_patience: int = 1 early_stopping_threshold: Optional = 0.0 )
Parameters
- early_stopping_patience (
int
) — Use withmetric_for_best_model
to stop training when the specified metric worsens forearly_stopping_patience
evaluation calls. - early_stopping_threshold(
float
, optional) — Use with TrainingArgumentsmetric_for_best_model
andearly_stopping_patience
to denote how much the specified metric must improve to satisfy early stopping conditions. `
A TrainerCallback that handles early stopping.
This callback depends on TrainingArguments
argument load_best_model_at_end functionality to set best_metric
in TrainerState. Note that if the TrainingArguments
argument save_steps differs from eval_steps, the
early stopping will not occur until the next save step.
class transformers.integrations.TensorBoardCallback
< source >( tb_writer = None )
A TrainerCallback that sends the logs to TensorBoard.
A TrainerCallback that logs metrics, media, model checkpoints to Weight and Biases.
Setup the optional Weights & Biases (wandb) integration.
One can subclass and override this method to customize the setup if needed. Find more information here. You can also override the following environment variables:
Environment:
WANDB_LOG_MODEL (
str
, optional, defaults to"false"
): Whether to log model and checkpoints during training. Can be"end"
,"checkpoint"
or"false"
. If set to"end"
, the model will be uploaded at the end of training. If set to"checkpoint"
, the checkpoint will be uploaded everyargs.save_steps
. If set to"false"
, the model will not be uploaded. Use along withload_best_model_at_end()
to upload best model.Deprecated in 5.0
Setting
WANDB_LOG_MODEL
asbool
will be deprecated in version 5 of 🤗 Transformers.WANDB_WATCH (
str
, optional defaults to"false"
): Can be"gradients"
,"all"
,"parameters"
, or"false"
. Set to"all"
to log gradients and parameters.WANDB_PROJECT (
str
, optional, defaults to"huggingface"
): Set this to a custom string to store results in a different project.WANDB_DISABLED (
bool
, optional, defaults toFalse
): Whether to disable wandb entirely. SetWANDB_DISABLED=true
to disable.
A TrainerCallback that sends the logs to MLflow. Can be disabled by setting
environment variable DISABLE_MLFLOW_INTEGRATION = TRUE
.
Setup the optional MLflow integration.
Environment:
- HF_MLFLOW_LOG_ARTIFACTS (
str
, optional): Whether to use MLflow.log_artifact()
facility to log artifacts. This only makes sense if logging to a remote server, e.g. s3 or GCS. If set toTrue
or 1, will copy each saved checkpoint on each save inTrainingArguments
’soutput_dir
to the local or remote artifact storage. Using it without a remote storage will just copy the files to your artifact location. - MLFLOW_TRACKING_URI (
str
, optional): Whether to store runs at a specific path or remote server. Unset by default, which skips setting the tracking URI entirely. - MLFLOW_EXPERIMENT_NAME (
str
, optional, defaults toNone
): Whether to use an MLflow experiment_name under which to launch the run. Default toNone
which will point to theDefault
experiment in MLflow. Otherwise, it is a case sensitive name of the experiment to be activated. If an experiment with this name does not exist, a new experiment with this name is created. - MLFLOW_TAGS (
str
, optional): A string dump of a dictionary of key/value pair to be added to the MLflow run as tags. Example:os.environ['MLFLOW_TAGS']='{"release.candidate": "RC1", "release.version": "2.2.0"}'
. - MLFLOW_NESTED_RUN (
str
, optional): Whether to use MLflow nested runs. If set toTrue
or 1, will create a nested run inside the current run. - MLFLOW_RUN_ID (
str
, optional): Allow to reattach to an existing run which can be usefull when resuming training from a checkpoint. WhenMLFLOW_RUN_ID
environment variable is set,start_run
attempts to resume a run with the specified run ID and other parameters are ignored. - MLFLOW_FLATTEN_PARAMS (
str
, optional, defaults toFalse
): Whether to flatten the parameters dictionary before logging. - MLFLOW_MAX_LOG_PARAMS (
int
, optional): Set the maximum number of parameters to log in the run.
A TrainerCallback that sends the logs to AzureML.
A TrainerCallback that tracks the CO2 emission of training.
class transformers.integrations.NeptuneCallback
< source >( api_token: Optional = None project: Optional = None name: Optional = None base_namespace: str = 'finetuning' run = None log_parameters: bool = True log_checkpoints: Optional = None **neptune_run_kwargs )
Parameters
- api_token (
str
, optional) — Neptune API token obtained upon registration. You can leave this argument out if you have saved your token to theNEPTUNE_API_TOKEN
environment variable (strongly recommended). See full setup instructions in the docs. - project (
str
, optional) — Name of an existing Neptune project, in the form “workspace-name/project-name”. You can find and copy the name in Neptune from the project settings -> Properties. If None (default), the value of theNEPTUNE_PROJECT
environment variable is used. - name (
str
, optional) — Custom name for the run. - base_namespace (
str
, optional, defaults to “finetuning”) — In the Neptune run, the root namespace that will contain all of the metadata logged by the callback. - log_parameters (
bool
, optional, defaults toTrue
) — If True, logs all Trainer arguments and model parameters provided by the Trainer. - log_checkpoints (
str
, optional) — If “same”, uploads checkpoints whenever they are saved by the Trainer. If “last”, uploads only the most recently saved checkpoint. If “best”, uploads the best checkpoint (among the ones saved by the Trainer). IfNone
, does not upload checkpoints. - run (
Run
, optional) — Pass a Neptune run object if you want to continue logging to an existing run. Read more about resuming runs in the docs. - **neptune_run_kwargs (optional) —
Additional keyword arguments to be passed directly to the
neptune.init_run()
function when a new run is created.
TrainerCallback that sends the logs to Neptune.
For instructions and examples, see the Transformers integration guide in the Neptune documentation.
A TrainerCallback that sends the logs to ClearML.
Environment:
- CLEARML_PROJECT (
str
, optional, defaults toHuggingFace Transformers
): ClearML project name. - CLEARML_TASK (
str
, optional, defaults toTrainer
): ClearML task name. - CLEARML_LOG_MODEL (
bool
, optional, defaults toFalse
): Whether to log models as artifacts during training.
A TrainerCallback that logs to DagsHub. Extends MLflowCallback
Setup the DagsHub’s Logging integration.
Environment:
- HF_DAGSHUB_LOG_ARTIFACTS (
str
, optional): Whether to save the data and model artifacts for the experiment. Default toFalse
.
class transformers.integrations.FlyteCallback
< source >( save_log_history: bool = True sync_checkpoints: bool = True )
Parameters
A TrainerCallback that sends the logs to Flyte. NOTE: This callback only works within a Flyte task.
class transformers.integrations.DVCLiveCallback
< source >( live: Optional = None log_model: Union = None **kwargs )
Parameters
- live (
dvclive.Live
, optional, defaults toNone
) — Optional Live instance. If None, a new instance will be created using **kwargs. - log_model (Union[Literal[“all”], bool], optional, defaults to
None
) — Whether to usedvclive.Live.log_artifact()
to log checkpoints created byTrainer
. If set toTrue
, the final checkpoint is logged at the end of training. If set to"all"
, the entireTrainingArguments
’soutput_dir
is logged at each checkpoint.
A TrainerCallback that sends the logs to DVCLive.
Use the environment variables below in setup
to configure the integration. To customize this callback beyond
those environment variables, see here.
Setup the optional DVCLive integration. To customize this callback beyond the environment variables below, see here.
Environment:
- HF_DVCLIVE_LOG_MODEL (
str
, optional): Whether to usedvclive.Live.log_artifact()
to log checkpoints created byTrainer
. If set toTrue
or 1, the final checkpoint is logged at the end of training. If set toall
, the entireTrainingArguments
’soutput_dir
is logged at each checkpoint.
TrainerCallback
class transformers.TrainerCallback
< source >( )
Parameters
- args (
TrainingArguments
) — The training arguments used to instantiate theTrainer
. - state (TrainerState) —
The current state of the
Trainer
. - control (TrainerControl) —
The object that is returned to the
Trainer
and can be used to make some decisions. - model (PreTrainedModel or
torch.nn.Module
) — The model being trained. - tokenizer (PreTrainedTokenizer) —
The tokenizer used for encoding the data. This is deprecated in favour of
processing_class
. - processing_class ([
PreTrainedTokenizer
orBaseImageProcessor
orProcessorMixin
orFeatureExtractionMixin
]) — The processing class used for encoding the data. Can be a tokenizer, a processor, an image processor or a feature extractor. - optimizer (
torch.optim.Optimizer
) — The optimizer used for the training steps. - lr_scheduler (
torch.optim.lr_scheduler.LambdaLR
) — The scheduler used for setting the learning rate. - train_dataloader (
torch.utils.data.DataLoader
, optional) — The current dataloader used for training. - eval_dataloader (
torch.utils.data.DataLoader
, optional) — The current dataloader used for evaluation. - metrics (
Dict[str, float]
) — The metrics computed by the last evaluation phase.Those are only accessible in the event
on_evaluate
. - logs (
Dict[str, float]
) — The values to log.Those are only accessible in the event
on_log
.
A class for objects that will inspect the state of the training loop at some events and take some decisions. At each of those events the following arguments are available:
The control
object is the only one that can be changed by the callback, in which case the event that changes it
should return the modified version.
The argument args
, state
and control
are positionals for all events, all the others are grouped in kwargs
.
You can unpack the ones you need in the signature of the event using them. As an example, see the code of the
simple PrinterCallback.
Example:
class PrinterCallback(TrainerCallback):
def on_log(self, args, state, control, logs=None, **kwargs):
_ = logs.pop("total_flos", None)
if state.is_local_process_zero:
print(logs)
on_epoch_begin
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called at the beginning of an epoch.
on_epoch_end
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called at the end of an epoch.
on_evaluate
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called after an evaluation phase.
on_init_end
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called at the end of the initialization of the Trainer
.
Event called after logging the last logs.
on_optimizer_step
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called after the optimizer step but before gradients are zeroed out. Useful for monitoring gradients.
on_pre_optimizer_step
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called before the optimizer step but after gradient clipping. Useful for monitoring gradients.
on_predict
< source >( args: TrainingArguments state: TrainerState control: TrainerControl metrics **kwargs )
Event called after a successful prediction.
on_prediction_step
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called after a prediction step.
Event called after a checkpoint save.
on_step_begin
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called at the beginning of a training step. If using gradient accumulation, one training step might take several inputs.
on_step_end
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called at the end of a training step. If using gradient accumulation, one training step might take several inputs.
on_substep_end
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called at the end of an substep during gradient accumulation.
on_train_begin
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called at the beginning of training.
on_train_end
< source >( args: TrainingArguments state: TrainerState control: TrainerControl **kwargs )
Event called at the end of training.
以下是如何使用PyTorch注册自定义callback的示例:
Trainer
:
class MyCallback(TrainerCallback):
"A callback that prints a message at the beginning of training"
def on_train_begin(self, args, state, control, **kwargs):
print("Starting training")
trainer = Trainer(
model,
args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
callbacks=[MyCallback], # We can either pass the callback class this way or an instance of it (MyCallback())
)
注册callback的另一种方式是调用 trainer.add_callback()
,如下所示:
trainer = Trainer(...)
trainer.add_callback(MyCallback)
# Alternatively, we can pass an instance of the callback class
trainer.add_callback(MyCallback())
TrainerState
class transformers.TrainerState
< source >( epoch: Optional = None global_step: int = 0 max_steps: int = 0 logging_steps: int = 500 eval_steps: int = 500 save_steps: int = 500 train_batch_size: int = None num_train_epochs: int = 0 num_input_tokens_seen: int = 0 total_flos: float = 0 log_history: List = None best_metric: Optional = None best_model_checkpoint: Optional = None is_local_process_zero: bool = True is_world_process_zero: bool = True is_hyper_param_search: bool = False trial_name: str = None trial_params: Dict = None stateful_callbacks: List = None )
Parameters
- epoch (
float
, optional) — Only set during training, will represent the epoch the training is at (the decimal part being the percentage of the current epoch completed). - global_step (
int
, optional, defaults to 0) — During training, represents the number of update steps completed. - max_steps (
int
, optional, defaults to 0) — The number of update steps to do during the current training. - logging_steps (
int
, optional, defaults to 500) — Log every X updates steps - eval_steps (
int
, optional) — Run an evaluation every X steps. - save_steps (
int
, optional, defaults to 500) — Save checkpoint every X updates steps. - train_batch_size (
int
, optional) — The batch size for the training dataloader. Only needed whenauto_find_batch_size
has been used. - num_input_tokens_seen (
int
, optional, defaults to 0) — The number of tokens seen during training (number of input tokens, not the number of prediction tokens). - total_flos (
float
, optional, defaults to 0) — The total number of floating operations done by the model since the beginning of training (stored as floats to avoid overflow). - log_history (
List[Dict[str, float]]
, optional) — The list of logs done since the beginning of training. - best_metric (
float
, optional) — When tracking the best model, the value of the best metric encountered so far. - best_model_checkpoint (
str
, optional) — When tracking the best model, the value of the name of the checkpoint for the best model encountered so far. - is_local_process_zero (
bool
, optional, defaults toTrue
) — Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on several machines) main process. - is_world_process_zero (
bool
, optional, defaults toTrue
) — Whether or not this process is the global main process (when training in a distributed fashion on several machines, this is only going to beTrue
for one process). - is_hyper_param_search (
bool
, optional, defaults toFalse
) — Whether we are in the process of a hyper parameter search using Trainer.hyperparameter_search. This will impact the way data will be logged in TensorBoard. - stateful_callbacks (
List[StatefulTrainerCallback]
, optional) — Callbacks attached to theTrainer
that should have their states be saved or restored. Relevent callbacks should implement astate
andfrom_state
function.
A class containing the Trainer
inner state that will be saved along the model and optimizer when checkpointing
and passed to the TrainerCallback.
In all this class, one step is to be understood as one update step. When using gradient accumulation, one update
step may require several forward and backward passes: if you use gradient_accumulation_steps=n
, then one update
step requires going through n batches.
Create an instance from the content of json_path
.
Save the content of this instance in JSON format inside json_path
.
TrainerControl
class transformers.TrainerControl
< source >( should_training_stop: bool = False should_epoch_stop: bool = False should_save: bool = False should_evaluate: bool = False should_log: bool = False )
Parameters
- should_training_stop (
bool
, optional, defaults toFalse
) — Whether or not the training should be interrupted.If
True
, this variable will not be set back toFalse
. The training will just stop. - should_epoch_stop (
bool
, optional, defaults toFalse
) — Whether or not the current epoch should be interrupted.If
True
, this variable will be set back toFalse
at the beginning of the next epoch. - should_save (
bool
, optional, defaults toFalse
) — Whether or not the model should be saved at this step.If
True
, this variable will be set back toFalse
at the beginning of the next step. - should_evaluate (
bool
, optional, defaults toFalse
) — Whether or not the model should be evaluated at this step.If
True
, this variable will be set back toFalse
at the beginning of the next step. - should_log (
bool
, optional, defaults toFalse
) — Whether or not the logs should be reported at this step.If
True
, this variable will be set back toFalse
at the beginning of the next step.
A class that handles the Trainer
control flow. This class is used by the TrainerCallback to activate some
switches in the training loop.