Transformers documentation

使用 🤗 Tokenizers 中的分词器

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.46.2).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

使用 🤗 Tokenizers 中的分词器

PreTrainedTokenizerFast 依赖于 🤗 Tokenizers 库。从 🤗 Tokenizers 库获得的分词器可以被轻松地加载到 🤗 Transformers 中。

在了解具体内容之前,让我们先用几行代码创建一个虚拟的分词器:

>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace

>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])

>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)

现在,我们拥有了一个针对我们定义的文件进行训练的分词器。我们可以在当前运行时中继续使用它,或者将其保存到一个 JSON 文件以供将来重复使用。

直接从分词器对象加载

让我们看看如何利用 🤗 Transformers 库中的这个分词器对象。PreTrainedTokenizerFast 类允许通过接受已实例化的 tokenizer 对象作为参数,进行轻松实例化:

>>> from transformers import PreTrainedTokenizerFast

>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)

现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往分词器页面了解更多信息。

从 JSON 文件加载

为了从 JSON 文件中加载分词器,让我们先保存我们的分词器:

>>> tokenizer.save("tokenizer.json")

我们保存此文件的路径可以通过 tokenizer_file 参数传递给 PreTrainedTokenizerFast 初始化方法:

>>> from transformers import PreTrainedTokenizerFast

>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")

现在可以使用这个对象,使用 🤗 Transformers 分词器共享的所有方法!前往分词器页面了解更多信息。

< > Update on GitHub