LLaMA
개요
LLaMA 모델은 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard Grave, Guillaume Lample에 의해 제안된 LLaMA: Open and Efficient Foundation Language Models에서 소개되었습니다. 이 모델은 7B에서 65B개의 파라미터까지 다양한 크기의 기초 언어 모델을 모아놓은 것입니다.
논문의 초록은 다음과 같습니다:
“LLaMA는 7B에서 65B개의 파라미터 수를 가진 기초 언어 모델의 모음입니다. 우리는 수조 개의 토큰으로 모델을 훈련시켰고, 공개적으로 이용 가능한 데이터셋만을 사용하여 최고 수준의 모델을 훈련시킬 수 있음을 보여줍니다. 특히, LLaMA-13B 모델은 대부분의 벤치마크에서 GPT-3 (175B)를 능가하며, LLaMA-65B는 최고 수준의 모델인 Chinchilla-70B와 PaLM-540B에 버금가는 성능을 보입니다. 우리는 모든 모델을 연구 커뮤니티에 공개합니다.”
팁:
- LLaMA 모델의 가중치는 이 양식을 작성하여 얻을 수 있습니다.
- 가중치를 다운로드한 후에는 이를 변환 스크립트를 사용하여 Hugging Face Transformers 형식으로 변환해야합니다. 변환 스크립트를 실행하려면 아래의 예시 명령어를 참고하세요:
python src/transformers/models/llama/convert_llama_weights_to_hf.py \ --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
- 변환을 하였다면 모델과 토크나이저는 다음과 같이 로드할 수 있습니다:
from transformers import LlamaForCausalLM, LlamaTokenizer
tokenizer = LlamaTokenizer.from_pretrained("/output/path")
model = LlamaForCausalLM.from_pretrained("/output/path")
스크립트를 실행하기 위해서는 모델을 float16 정밀도로 전부 로드할 수 있을 만큼의 충분한 CPU RAM이 필요합니다. (가장 큰 버전의 모델이 여러 체크포인트로 나뉘어 있더라도, 각 체크포인트는 모델의 각 가중치의 일부를 포함하고 있기 때문에 모든 체크포인트를 RAM에 로드해야 합니다) 65B 모델의 경우, 총 130GB의 RAM이 필요합니다.
- LLaMA 토크나이저는 sentencepiece를 기반으로 하는 BPE 모델입니다. sentencepiece의 특징 중 하나는 시퀀스를 디코딩할 때 첫 토큰이 단어의 시작이라면 (예를 들어 “Banana”), 토크나이저는 문자열 앞에 공백을 추가하지 않는다는 것입니다.
이 모델은 BlackSamorez의 기여와 함께, zphang에 의해 제공되었습니다. Hugging Face에서의 구현 코드는 GPT-NeoX를 기반으로 하며 여기에서 찾을 수 있고, 저자의 코드 원본은 여기에서 확인할 수 있습니다.
원래 LLaMA 모델을 기반으로 Meta AI에서 몇 가지 후속 작업을 발표했습니다:
- Llama2: Llama2는 구조적인 몇 가지 수정(Grouped Query Attention)을 통해 개선된 버전이며, 2조 개의 토큰으로 사전 훈련이 되어 있습니다. Llama2에 대한 자세한 내용은 이 문서를 참고하세요.
리소스
LLaMA를 시작하는 데 도움이 될 Hugging Face 및 커뮤니티(🌎로 표시)의 공식 자료 목록입니다. 여기에 자료를 제출하고 싶다면 Pull Request를 올려주세요! 추가할 자료는 기존의 자료와 중복되지 않고 새로운 내용을 보여주는 것이 좋습니다.
- LLaMA 모델을 텍스트 분류 작업에 적용하기 위한 프롬프트 튜닝 방법에 대한 노트북 🌎
- Stack Exchange에서 질문에 답하는 LLaMA를 훈련하는 방법을 위한 StackLLaMA: RLHF로 LLaMA를 훈련하는 실전 가이드 🌎
⚗️ 최적화
- 제한된 메모리를 가진 GPU에서 xturing 라이브러리를 사용하여 LLaMA 모델을 미세 조정하는 방법에 대한 노트북 🌎
⚡️ 추론
- 🤗 PEFT 라이브러리의 PeftModel을 사용하여 LLaMA 모델을 실행하는 방법에 대한 노트북 🌎
- LangChain을 사용하여 PEFT 어댑터 LLaMA 모델을 로드하는 방법에 대한 노트북 🌎
🚀 배포
- 🤗 PEFT 라이브러리와 사용자 친화적인 UI로 LLaMA 모델을 미세 조정하는 방법에 대한 노트북 🌎
- Amazon SageMaker에서 텍스트 생성을 위해 Open-LLaMA 모델을 배포하는 방법에 대한 노트북 🌎
LlamaConfig
class transformers.LlamaConfig
< source >( vocab_size = 32000 hidden_size = 4096 intermediate_size = 11008 num_hidden_layers = 32 num_attention_heads = 32 num_key_value_heads = None hidden_act = 'silu' max_position_embeddings = 2048 initializer_range = 0.02 rms_norm_eps = 1e-06 use_cache = True pad_token_id = None bos_token_id = 1 eos_token_id = 2 pretraining_tp = 1 tie_word_embeddings = False rope_theta = 10000.0 rope_scaling = None attention_bias = False attention_dropout = 0.0 mlp_bias = False head_dim = None **kwargs )
Parameters
- vocab_size (
int
, optional, defaults to 32000) — Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by theinputs_ids
passed when calling LlamaModel - hidden_size (
int
, optional, defaults to 4096) — Dimension of the hidden representations. - intermediate_size (
int
, optional, defaults to 11008) — Dimension of the MLP representations. - num_hidden_layers (
int
, optional, defaults to 32) — Number of hidden layers in the Transformer decoder. - num_attention_heads (
int
, optional, defaults to 32) — Number of attention heads for each attention layer in the Transformer decoder. - num_key_value_heads (
int
, optional) — This is the number of key_value heads that should be used to implement Grouped Query Attention. Ifnum_key_value_heads=num_attention_heads
, the model will use Multi Head Attention (MHA), ifnum_key_value_heads=1
the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout this paper. If it is not specified, will default tonum_attention_heads
. - hidden_act (
str
orfunction
, optional, defaults to"silu"
) — The non-linear activation function (function or string) in the decoder. - max_position_embeddings (
int
, optional, defaults to 2048) — The maximum sequence length that this model might ever be used with. Llama 1 supports up to 2048 tokens, Llama 2 up to 4096, CodeLlama up to 16384. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - rms_norm_eps (
float
, optional, defaults to 1e-06) — The epsilon used by the rms normalization layers. - use_cache (
bool
, optional, defaults toTrue
) — Whether or not the model should return the last key/values attentions (not used by all models). Only relevant ifconfig.is_decoder=True
. - pad_token_id (
int
, optional) — Padding token id. - bos_token_id (
int
, optional, defaults to 1) — Beginning of stream token id. - eos_token_id (
int
, optional, defaults to 2) — End of stream token id. - pretraining_tp (
int
, optional, defaults to 1) — Experimental feature. Tensor parallelism rank used during pretraining. Please refer to this document to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to this issue. - tie_word_embeddings (
bool
, optional, defaults toFalse
) — Whether to tie weight embeddings - rope_theta (
float
, optional, defaults to 10000.0) — The base period of the RoPE embeddings. - rope_scaling (
Dict
, optional) — Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type and you expect the model to work on longermax_position_embeddings
, we recommend you to update this value accordingly. Expected contents:rope_type
(str
): The sub-variant of RoPE to use. Can be one of [‘default’, ‘linear’, ‘dynamic’, ‘yarn’, ‘longrope’, ‘llama3’], with ‘default’ being the original RoPE implementation.factor
(float
, optional): Used with all rope types except ‘default’. The scaling factor to apply to the RoPE embeddings. In most scaling types, afactor
of x will enable the model to handle sequences of length x original maximum pre-trained length.original_max_position_embeddings
(int
, optional): Used with ‘dynamic’, ‘longrope’ and ‘llama3’. The original max position embeddings used during pretraining.attention_factor
(float
, optional): Used with ‘yarn’ and ‘longrope’. The scaling factor to be applied on the attention computation. If unspecified, it defaults to value recommended by the implementation, using thefactor
field to infer the suggested value.beta_fast
(float
, optional): Only used with ‘yarn’. Parameter to set the boundary for extrapolation (only) in the linear ramp function. If unspecified, it defaults to 32.beta_slow
(float
, optional): Only used with ‘yarn’. Parameter to set the boundary for interpolation (only) in the linear ramp function. If unspecified, it defaults to 1.short_factor
(List[float]
, optional): Only used with ‘longrope’. The scaling factor to be applied to short contexts (<original_max_position_embeddings
). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2long_factor
(List[float]
, optional): Only used with ‘longrope’. The scaling factor to be applied to long contexts (<original_max_position_embeddings
). Must be a list of numbers with the same length as the hidden size divided by the number of attention heads divided by 2low_freq_factor
(float
, optional): Only used with ‘llama3’. Scaling factor applied to low frequency components of the RoPEhigh_freq_factor
(float
, optional*): Only used with ‘llama3’. Scaling factor applied to high frequency components of the RoPE - attention_bias (
bool
, optional, defaults toFalse
) — Whether to use a bias in the query, key, value and output projection layers during self-attention. - attention_dropout (
float
, optional, defaults to 0.0) — The dropout ratio for the attention probabilities. - mlp_bias (
bool
, optional, defaults toFalse
) — Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers. - head_dim (
int
, optional) — The attention head dimension. If None, it will default to hidden_size // num_attention_heads
This is the configuration class to store the configuration of a LlamaModel. It is used to instantiate an LLaMA model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the LLaMA-7B.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
>>> from transformers import LlamaModel, LlamaConfig
>>> # Initializing a LLaMA llama-7b style configuration
>>> configuration = LlamaConfig()
>>> # Initializing a model from the llama-7b style configuration
>>> model = LlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
LlamaTokenizer
class transformers.LlamaTokenizer
< source >( vocab_file unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = None sp_model_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None add_bos_token = True add_eos_token = False clean_up_tokenization_spaces = False use_default_system_prompt = False spaces_between_special_tokens = False legacy = None add_prefix_space = True **kwargs )
Parameters
- vocab_file (
str
) — Path to the vocabulary file. - unk_token (
str
ortokenizers.AddedToken
, optional, defaults to"<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. - bos_token (
str
ortokenizers.AddedToken
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. - eos_token (
str
ortokenizers.AddedToken
, optional, defaults to"</s>"
) — The end of sequence token. - pad_token (
str
ortokenizers.AddedToken
, optional) — A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. - sp_model_kwargs (
Dict[str, Any]
,Optional
, optional) — Will be passed to theSentencePieceProcessor.__init__()
method. The Python wrapper for SentencePiece can be used, among other things, to set:-
enable_sampling
: Enable subword regularization. -
nbest_size
: Sampling parameters for unigram. Invalid for BPE-Dropout.nbest_size = {0,1}
: No sampling is performed.nbest_size > 1
: samples from the nbest_size results.nbest_size < 0
: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) using forward-filtering-and-backward-sampling algorithm.
-
alpha
: Smoothing parameter for unigram sampling, and dropout probability of merge operations for BPE-dropout.
-
- add_bos_token (
bool
, optional, defaults toTrue
) — Whether or not to add anbos_token
at the start of sequences. - add_eos_token (
bool
, optional, defaults toFalse
) — Whether or not to add aneos_token
at the end of sequences. - clean_up_tokenization_spaces (
bool
, optional, defaults toFalse
) — Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. - use_default_system_prompt (
bool
, optional, defaults toFalse
) — Whether or not the default system prompt for Llama should be used. - spaces_between_special_tokens (
bool
, optional, defaults toFalse
) — Whether or not to add spaces between special tokens. - legacy (
bool
, optional) — Whether or not thelegacy
behavior of the tokenizer should be used. Legacy is before the merge of #24622 and #25224 which includes fixes to properly handle tokens that appear after special tokens. Make sure to also setfrom_slow
toTrue
. A simple example:legacy=True
:
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding. The default padding token is unset as there is no padding token in the original model.
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs. - already_has_special_tokens (
bool
, optional, defaults toFalse
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
- token_ids_0 (
List[int]
) — List of ids. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of token type IDs according to the given sequence(s).
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
if token_ids_1 is None, only returns the first portion of the mask (0s).
save_vocabulary
< source >( save_directory filename_prefix: typing.Optional[str] = None ) → Tuple(str)
Save the vocabulary and special tokens file to a directory.
LlamaTokenizerFast
class transformers.LlamaTokenizerFast
< source >( vocab_file = None tokenizer_file = None clean_up_tokenization_spaces = False unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' add_bos_token = True add_eos_token = False use_default_system_prompt = False legacy = None add_prefix_space = None **kwargs )
Parameters
- vocab_file (
str
, optional) — SentencePiece file (generally has a .model extension) that contains the vocabulary necessary to instantiate a tokenizer. - tokenizer_file (
str
, optional) — tokenizers file (generally has a .json extension) that contains everything needed to load the tokenizer. - clean_up_tokenization_spaces (
bool
, optional, defaults toFalse
) — Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra spaces. - unk_token (
str
ortokenizers.AddedToken
, optional, defaults to"<unk>"
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. - bos_token (
str
ortokenizers.AddedToken
, optional, defaults to"<s>"
) — The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. - eos_token (
str
ortokenizers.AddedToken
, optional, defaults to"</s>"
) — The end of sequence token. - add_bos_token (
bool
, optional, defaults toTrue
) — Whether or not to add anbos_token
at the start of sequences. - add_eos_token (
bool
, optional, defaults toFalse
) — Whether or not to add aneos_token
at the end of sequences. - use_default_system_prompt (
bool
, optional, defaults toFalse
) — Whether or not the default system prompt for Llama should be used - legacy (
bool
, optional) — Whether or not thelegacy
behavior of the tokenizer should be used. Legacy is before the merge of #24622 and #25224 which includes fixes to properly handle tokens that appear after special tokens. Make sure to also setfrom_slow
toTrue
. A simple example:legacy=True
:
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no normalization.
>>> from transformers import LlamaTokenizerFast
>>> tokenizer = LlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
>>> tokenizer.encode("Hello this is a test")
[1, 15043, 445, 338, 263, 1243]
If you want to change the bos_token
or the eos_token
, make sure to specify them when initializing the model, or
call tokenizer.update_post_processor()
to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://huggingface.co./docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from PreTrainedTokenizerFast
which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → A list of integers in the range [0, 1]
Parameters
- token_ids_0 (
List[int]
) — List of ids of the first sequence. - token_ids_1 (
List[int]
, optional) — List of ids of the second sequence. - already_has_special_tokens (
bool
, optional, defaults toFalse
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
A list of integers in the range [0, 1]
1 for a special token, 0 for a sequence token.
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
or encode_plus
methods.
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Create the token type IDs corresponding to the sequences passed. What are token type IDs?
Should be overridden in a subclass if the model has a special way of building those.
Updates the underlying post processor with the current bos_token
and eos_token
.
LlamaModel
class transformers.LlamaModel
< source >( config: LlamaConfig )
Parameters
- config (LlamaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
- config — LlamaConfig
The bare LLaMA Model outputting raw hidden-states without any specific head on top. This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Transformer decoder consisting of config.num_hidden_layers layers. Each layer is a LlamaDecoderLayer
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Optional[transformers.cache_utils.Cache] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **flash_attn_kwargs: typing_extensions.Unpack[transformers.modeling_flash_attention_utils.FlashAttentionKwargs] )
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If
past_key_values
is used, optionally only the lastinput_ids
have to be input (seepast_key_values
).If you want to change padding behavior, you should read
modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more information on the default strategy.- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. - past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Two formats are allowed:
- a Cache instance, see our kv cache guide;
- Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
The model will output the same cache format that is fed as input. If no
past_key_values
are passed, the legacy cache format will be returned.If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
The LlamaModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
LlamaForCausalLM
forward
< source >( input_ids: LongTensor = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[typing.List[torch.FloatTensor], transformers.cache_utils.Cache, NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None num_logits_to_keep: int = 0 **kwargs: typing_extensions.Unpack[transformers.models.llama.modeling_llama.KwargsForCausalLM] ) → transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If
past_key_values
is used, optionally only the lastinput_ids
have to be input (seepast_key_values
).If you want to change padding behavior, you should read
modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more information on the default strategy.- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. - past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Two formats are allowed:
- a Cache instance, see our kv cache guide;
- Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
The model will output the same cache format that is fed as input. If no
past_key_values
are passed, the legacy cache format will be returned.If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - Args —
labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional): Labels for computing the masked language modeling loss. Indices should either be in[0, ..., config.vocab_size]
or -100 (seeinput_ids
docstring). Tokens with indices set to-100
are ignored (masked), the loss is only computed for the tokens with labels in[0, ..., config.vocab_size]
.num_logits_to_keep (
int
, optional): Calculate logits for the lastnum_logits_to_keep
tokens. If0
, calculate logits for allinput_ids
(special case). Only last token logits are needed for generation, and calculating them only for that token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
Returns
transformers.modeling_outputs.CausalLMOutputWithPast or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithPast or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (LlamaConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
)Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The LlamaForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, LlamaForCausalLM
>>> model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
LlamaForSequenceClassification
class transformers.LlamaForSequenceClassification
< source >( config )
Parameters
- config (LlamaConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The LLaMa Model transformer with a sequence classification head on top (linear layer).
LlamaForSequenceClassification uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
pad_token_id
is defined in the configuration, it finds the last token that is not a padding token in each row. If
no pad_token_id
is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when inputs_embeds
are passed instead of input_ids
, it does the same (take the last value in
each row of the batch).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.Tensor] = None position_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[typing.List[torch.FloatTensor], transformers.cache_utils.Cache, NoneType] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
) — Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide it.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- attention_mask (
torch.Tensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
If
past_key_values
is used, optionally only the lastinput_ids
have to be input (seepast_key_values
).If you want to change padding behavior, you should read
modeling_opt._prepare_decoder_attention_mask
and modify to your needs. See diagram 1 in the paper for more information on the default strategy.- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- position_ids (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Indices of positions of each input sequence tokens in the position embeddings. Selected in the range[0, config.n_positions - 1]
. - past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Two formats are allowed:
- a Cache instance, see our kv cache guide;
- Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
The model will output the same cache format that is fed as input. If no
past_key_values
are passed, the legacy cache format will be returned.If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix. - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
The LlamaForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.