# 構成
基本クラス PretrainedConfig は、設定をロード/保存するための一般的なメソッドを実装します。 ローカル ファイルまたはディレクトリから、またはライブラリ (ダウンロードされた) によって提供される事前トレーニング済みモデル構成から HuggingFace の AWS S3 リポジトリから)。
各派生構成クラスはモデル固有の属性を実装します。すべての構成クラスに存在する共通の属性は次のとおりです。
hidden_size
、num_attention_heads
、および num_hidden_layers
。テキスト モデルはさらに以下を実装します。
vocab_size
。
PretrainedConfig
class transformers.PretrainedConfig
< source >( **kwargs )
Parameters
- name_or_path (
str
, optional, defaults to""
) — Store the string that was passed to PreTrainedModel.from_pretrained() or TFPreTrainedModel.from_pretrained() aspretrained_model_name_or_path
if the configuration was created with such a method. - output_hidden_states (
bool
, optional, defaults toFalse
) — Whether or not the model should return all hidden-states. - output_attentions (
bool
, optional, defaults toFalse
) — Whether or not the model should returns all attentions. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not the model should return a ModelOutput instead of a plain tuple. - is_encoder_decoder (
bool
, optional, defaults toFalse
) — Whether the model is used as an encoder/decoder or not. - is_decoder (
bool
, optional, defaults toFalse
) — Whether the model is used as decoder or not (in which case it’s used as an encoder). - cross_attention_hidden_size** (
bool
, optional) — The hidden size of the cross-attention layer in case the model is used as a decoder in an encoder-decoder setting and the cross-attention hidden dimension differs fromself.config.hidden_size
. - add_cross_attention (
bool
, optional, defaults toFalse
) — Whether cross-attention layers should be added to the model. Note, this option is only relevant for models that can be used as decoder models within theEncoderDecoderModel
class, which consists of all models inAUTO_MODELS_FOR_CAUSAL_LM
. - tie_encoder_decoder (
bool
, optional, defaults toFalse
) — Whether all encoder weights should be tied to their equivalent decoder weights. This requires the encoder and decoder model to have the exact same parameter names. - prune_heads (
Dict[int, List[int]]
, optional, defaults to{}
) — Pruned heads of the model. The keys are the selected layer indices and the associated values, the list of heads to prune in said layer.For instance
{1: [0, 2], 2: [2, 3]}
will prune heads 0 and 2 on layer 1 and heads 2 and 3 on layer 2. - chunk_size_feed_forward (
int
, optional, defaults to0
) — The chunk size of all feed forward layers in the residual attention blocks. A chunk size of0
means that the feed forward layer is not chunked. A chunk size of n means that the feed forward layer processesn
< sequence_length embeddings at a time. For more information on feed forward chunking, see How does Feed Forward Chunking work?.
Parameters for fine-tuning tasks
- architectures (
List[str]
, optional) — Model architectures that can be used with the model pretrained weights. - finetuning_task (
str
, optional) — Name of the task used to fine-tune the model. This can be used when converting from an original (TensorFlow or PyTorch) checkpoint. - id2label (
Dict[int, str]
, optional) — A map from index (for instance prediction index, or target index) to label. - label2id (
Dict[str, int]
, optional) — A map from label to index for the model. - num_labels (
int
, optional) — Number of labels to use in the last layer added to the model, typically for a classification task. - task_specific_params (
Dict[str, Any]
, optional) — Additional keyword arguments to store for the current task. - problem_type (
str
, optional) — Problem type forXxxForSequenceClassification
models. Can be one of"regression"
,"single_label_classification"
or"multi_label_classification"
.
Parameters linked to the tokenizer
- tokenizer_class (
str
, optional) — The name of the associated tokenizer class to use (if none is set, will use the tokenizer associated to the model by default). - prefix (
str
, optional) — A specific prompt that should be added at the beginning of each text before calling the model. - bos_token_id (
int
, optional) — The id of the beginning-of-stream token. - pad_token_id (
int
, optional) — The id of the padding token. - eos_token_id (
int
, optional) — The id of the end-of-stream token. - decoder_start_token_id (
int
, optional) — If an encoder-decoder model starts decoding with a different token than bos, the id of that token. - sep_token_id (
int
, optional) — The id of the separation token.
PyTorch specific parameters
- torchscript (
bool
, optional, defaults toFalse
) — Whether or not the model should be used with Torchscript. - tie_word_embeddings (
bool
, optional, defaults toTrue
) — Whether the model’s input and output word embeddings should be tied. Note that this is only relevant if the model has a output word embedding layer. - torch_dtype (
str
, optional) — Thedtype
of the weights. This attribute can be used to initialize the model to a non-defaultdtype
(which is normallyfloat32
) and thus allow for optimal storage allocation. For example, if the saved model isfloat16
, ideally we want to load it back using the minimal amount of memory needed to loadfloat16
weights. Since the config object is stored in plain text, this attribute contains just the floating type string without thetorch.
prefix. For example, fortorch.float16
`torch_dtype
is the"float16"
string.This attribute is currently not being used during model loading time, but this may change in the future versions. But we can already start preparing for the future by saving the dtype with save_pretrained.
TensorFlow specific parameters
- use_bfloat16 (
bool
, optional, defaults toFalse
) — Whether or not the model should use BFloat16 scalars (only used by some TensorFlow models). - tf_legacy_loss (
bool
, optional, defaults toFalse
) — Whether the model should use legacy TensorFlow losses. Legacy losses have variable output shapes and may not be XLA-compatible. This option is here for backward compatibility and will be removed in Transformers v5. - loss_type (
str
, optional) — The type of loss that the model should use. It should be inLOSS_MAPPING
’s keys, otherwise the loss will be automatically infered from the model architecture.
Base class for all configuration classes. Handles a few parameters common to all models’ configurations as well as methods for loading/downloading/saving configurations.
A configuration file can be loaded and saved to disk. Loading the configuration file and using this file to initialize a model does not load the model weights. It only affects the model’s configuration.
Class attributes (overridden by derived classes):
- model_type (
str
) — An identifier for the model type, serialized into the JSON file, and used to recreate the correct object in AutoConfig. - is_composition (
bool
) — Whether the config class is composed of multiple sub-configs. In this case the config has to be initialized from two or more configs of type PretrainedConfig like:EncoderDecoderConfig
or~RagConfig
. - keys_to_ignore_at_inference (
List[str]
) — A list of keys to ignore by default when looking at dictionary outputs of the model during inference. - attribute_map (
Dict[str, str]
) — A dict that maps model specific attribute names to the standardized naming of attributes. - base_model_tp_plan (
Dict[str, Any]
) — A dict that maps sub-modules FQNs of a base model to a tensor parallel plan applied to the sub-module whenmodel.tensor_parallel
is called.
Common attributes (present in all subclasses):
- vocab_size (
int
) — The number of tokens in the vocabulary, which is also the first dimension of the embeddings matrix (this attribute may be missing for models that don’t have a text modality like ViT). - hidden_size (
int
) — The hidden size of the model. - num_attention_heads (
int
) — The number of attention heads used in the multi-head attention layers of the model. - num_hidden_layers (
int
) — The number of blocks in the model.
Setting parameters for sequence generation in the model config is deprecated. For backward compatibility, loading some of them will still be possible, but attempting to overwrite them will throw an exception — you should set them in a [~transformers.GenerationConfig]. Check the documentation of [~transformers.GenerationConfig] for more information about the individual parameters.
push_to_hub
< source >( repo_id: str use_temp_dir: typing.Optional[bool] = None commit_message: typing.Optional[str] = None private: typing.Optional[bool] = None token: typing.Union[bool, str, NoneType] = None max_shard_size: typing.Union[int, str, NoneType] = '5GB' create_pr: bool = False safe_serialization: bool = True revision: str = None commit_description: str = None tags: typing.Optional[typing.List[str]] = None **deprecated_kwargs )
Parameters
- repo_id (
str
) — The name of the repository you want to push your config to. It should contain your organization name when pushing to a given organization. - use_temp_dir (
bool
, optional) — Whether or not to use a temporary directory to store the files saved before they are pushed to the Hub. Will default toTrue
if there is no directory named likerepo_id
,False
otherwise. - commit_message (
str
, optional) — Message to commit while pushing. Will default to"Upload config"
. - private (
bool
, optional) — Whether to make the repo private. IfNone
(default), the repo will be public unless the organization’s default is private. This value is ignored if the repo already exists. - token (
bool
orstr
, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue
, will use the token generated when runninghuggingface-cli login
(stored in~/.huggingface
). Will default toTrue
ifrepo_url
is not specified. - max_shard_size (
int
orstr
, optional, defaults to"5GB"
) — Only applicable for models. The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size lower than this size. If expressed as a string, needs to be digits followed by a unit (like"5MB"
). We default it to"5GB"
so that users can easily load models on free-tier Google Colab instances without any CPU OOM issues. - create_pr (
bool
, optional, defaults toFalse
) — Whether or not to create a PR with the uploaded files or directly commit. - safe_serialization (
bool
, optional, defaults toTrue
) — Whether or not to convert the model weights in safetensors format for safer serialization. - revision (
str
, optional) — Branch to push the uploaded files to. - commit_description (
str
, optional) — The description of the commit that will be created - tags (
List[str]
, optional) — List of tags to push on the Hub.
Upload the configuration file to the 🤗 Model Hub.
Examples:
from transformers import AutoConfig
config = AutoConfig.from_pretrained("google-bert/bert-base-cased")
# Push the config to your namespace with the name "my-finetuned-bert".
config.push_to_hub("my-finetuned-bert")
# Push the config to an organization with the name "my-finetuned-bert".
config.push_to_hub("huggingface/my-finetuned-bert")
Checks whether the passed dictionary and its nested dicts have a torch_dtype key and if it’s not None,
converts torch.dtype to a string of just the type. For example, torch.float32
get converted into “float32”
string, which can then be stored in the json format.
from_dict
< source >( config_dict: typing.Dict[str, typing.Any] **kwargs ) → PretrainedConfig
Parameters
- config_dict (
Dict[str, Any]
) — Dictionary that will be used to instantiate the configuration object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the get_config_dict() method. - kwargs (
Dict[str, Any]
) — Additional parameters from which to initialize the configuration object.
Returns
The configuration object instantiated from those parameters.
Instantiates a PretrainedConfig from a Python dictionary of parameters.
from_json_file
< source >( json_file: typing.Union[str, os.PathLike] ) → PretrainedConfig
Parameters
Returns
The configuration object instantiated from that JSON file.
Instantiates a PretrainedConfig from the path to a JSON file of parameters.
from_pretrained
< source >( pretrained_model_name_or_path: typing.Union[str, os.PathLike] cache_dir: typing.Union[str, os.PathLike, NoneType] = None force_download: bool = False local_files_only: bool = False token: typing.Union[str, bool, NoneType] = None revision: str = 'main' **kwargs ) → PretrainedConfig
Parameters
- pretrained_model_name_or_path (
str
oros.PathLike
) — This can be either:- a string, the model id of a pretrained model configuration hosted inside a model repo on huggingface.co.
- a path to a directory containing a configuration file saved using the
save_pretrained() method, e.g.,
./my_model_directory/
. - a path or url to a saved configuration JSON file, e.g.,
./my_model_directory/configuration.json
.
- cache_dir (
str
oros.PathLike
, optional) — Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. - force_download (
bool
, optional, defaults toFalse
) — Whether or not to force to (re-)download the configuration files and override the cached versions if they exist. - resume_download — Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers.
- proxies (
Dict[str, str]
, optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g.,{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.
The proxies are used on each request. - token (
str
orbool
, optional) — The token to use as HTTP bearer authorization for remote files. IfTrue
, or not specified, will use the token generated when runninghuggingface-cli login
(stored in~/.huggingface
). - revision (
str
, optional, defaults to"main"
) — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, sorevision
can be any identifier allowed by git.To test a pull request you made on the Hub, you can pass
revision="refs/pr/<pr_number>"
. - return_unused_kwargs (
bool
, optional, defaults toFalse
) — IfFalse
, then this function returns just the final configuration object.If
True
, then this functions returns aTuple(config, unused_kwargs)
where unused_kwargs is a dictionary consisting of the key/value pairs whose keys are not configuration attributes: i.e., the part ofkwargs
which has not been used to updateconfig
and is otherwise ignored. - subfolder (
str
, optional, defaults to""
) — In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. - kwargs (
Dict[str, Any]
, optional) — The values in kwargs of any keys which are configuration attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are not configuration attributes is controlled by thereturn_unused_kwargs
keyword parameter.
Returns
The configuration object instantiated from this pretrained model.
Instantiate a PretrainedConfig (or a derived class) from a pretrained model configuration.
Examples:
# We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a
# derived class: BertConfig
config = BertConfig.from_pretrained(
"google-bert/bert-base-uncased"
) # Download configuration from huggingface.co and cache.
config = BertConfig.from_pretrained(
"./test/saved_model/"
) # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')*
config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json")
config = BertConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
assert config.output_attentions == True
config, unused_kwargs = BertConfig.from_pretrained(
"google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
)
assert config.output_attentions == True
assert unused_kwargs == {"foo": False}
get_config_dict
< source >( pretrained_model_name_or_path: typing.Union[str, os.PathLike] **kwargs ) → Tuple[Dict, Dict]
From a pretrained_model_name_or_path
, resolve to a dictionary of parameters, to be used for instantiating a
PretrainedConfig using from_dict
.
Returns the config that is meant to be used with text IO. On most models, it is the original config instance itself. On specific composite models, it is under a set of valid names.
If decoder
is set to True
, then only search for decoder config names.
register_for_auto_class
< source >( auto_class = 'AutoConfig' )
Register this class with a given auto class. This should only be used for custom configurations as the ones in
the library are already mapped with AutoConfig
.
This API is experimental and may have some slight breaking changes in the next releases.
save_pretrained
< source >( save_directory: typing.Union[str, os.PathLike] push_to_hub: bool = False **kwargs )
Parameters
- save_directory (
str
oros.PathLike
) — Directory where the configuration JSON file will be saved (will be created if it does not exist). - push_to_hub (
bool
, optional, defaults toFalse
) — Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to withrepo_id
(will default to the name ofsave_directory
in your namespace). - kwargs (
Dict[str, Any]
, optional) — Additional key word arguments passed along to the push_to_hub() method.
Save a configuration object to the directory save_directory
, so that it can be re-loaded using the
from_pretrained() class method.
to_dict
< source >( ) → Dict[str, Any]
Returns
Dict[str, Any]
Dictionary of all the attributes that make up this configuration instance.
Serializes this instance to a Python dictionary.
to_diff_dict
< source >( ) → Dict[str, Any]
Returns
Dict[str, Any]
Dictionary of all the attributes that make up this configuration instance,
Removes all attributes from config which correspond to the default config attributes for better readability and serializes to a Python dictionary.
to_json_file
< source >( json_file_path: typing.Union[str, os.PathLike] use_diff: bool = True )
Parameters
Save this instance to a JSON file.
to_json_string
< source >( use_diff: bool = True ) → str
Serializes this instance to a JSON string.
update
< source >( config_dict: typing.Dict[str, typing.Any] )
Updates attributes of this class with attributes from config_dict
.
update_from_string
< source >( update_str: str )
Updates attributes of this class with attributes from update_str
.
The expected format is ints, floats and strings as is, and for booleans use true
or false
. For example:
“n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index”
The keys to change have to already exist in the config object.