Flux
Flux is a series of text-to-image generation models based on diffusion transformers. To know more about Flux, check out the original blog post by the creators of Flux, Black Forest Labs.
Original model checkpoints for Flux can be found here. Original inference code can be found here.
Flux can be quite expensive to run on consumer hardware devices. However, you can perform a suite of optimizations to run it faster and in a more memory-friendly manner. Check out this section for more details. Additionally, Flux can benefit from quantization for memory efficiency with a trade-off in inference latency. Refer to this blog post to learn more. For an exhaustive list of resources, check out this gist.
Flux comes in the following variants:
model type | model id |
---|---|
Timestep-distilled | black-forest-labs/FLUX.1-schnell |
Guidance-distilled | black-forest-labs/FLUX.1-dev |
Fill Inpainting/Outpainting (Guidance-distilled) | black-forest-labs/FLUX.1-Fill-dev |
Canny Control (Guidance-distilled) | black-forest-labs/FLUX.1-Canny-dev |
Depth Control (Guidance-distilled) | black-forest-labs/FLUX.1-Depth-dev |
Canny Control (LoRA) | black-forest-labs/FLUX.1-Canny-dev-lora |
Depth Control (LoRA) | black-forest-labs/FLUX.1-Depth-dev-lora |
Redux (Adapter) | black-forest-labs/FLUX.1-Redux-dev |
All checkpoints have different usage which we detail below.
Timestep-distilled
max_sequence_length
cannot be more than 256.guidance_scale
needs to be 0.- As this is a timestep-distilled model, it benefits from fewer sampling steps.
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
out = pipe(
prompt=prompt,
guidance_scale=0.,
height=768,
width=1360,
num_inference_steps=4,
max_sequence_length=256,
).images[0]
out.save("image.png")
Guidance-distilled
- The guidance-distilled variant takes about 50 sampling steps for good-quality generation.
- It doesn’t have any limitations around the
max_sequence_length
.
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
pipe.enable_model_cpu_offload()
prompt = "a tiny astronaut hatching from an egg on the moon"
out = pipe(
prompt=prompt,
guidance_scale=3.5,
height=768,
width=1360,
num_inference_steps=50,
).images[0]
out.save("image.png")
Fill Inpainting/Outpainting
- Flux Fill pipeline does not require
strength
as an input like regular inpainting pipelines. - It supports both inpainting and outpainting.
import torch
from diffusers import FluxFillPipeline
from diffusers.utils import load_image
image = load_image("https://huggingface.co./datasets/YiYiXu/testing-images/resolve/main/cup.png")
mask = load_image("https://huggingface.co./datasets/YiYiXu/testing-images/resolve/main/cup_mask.png")
repo_id = "black-forest-labs/FLUX.1-Fill-dev"
pipe = FluxFillPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16).to("cuda")
image = pipe(
prompt="a white paper cup",
image=image,
mask_image=mask,
height=1632,
width=1232,
max_sequence_length=512,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save(f"output.png")
Canny Control
Note: black-forest-labs/Flux.1-Canny-dev
is not a ControlNetModel model. ControlNet models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Canny Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
# !pip install -U controlnet-aux
import torch
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline
from diffusers.utils import load_image
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16).to("cuda")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = CannyDetector()
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=30.0,
).images[0]
image.save("output.png")
Canny Control is also possible with a LoRA variant of this condition. The usage is as follows:
# !pip install -U controlnet-aux
import torch
from controlnet_aux import CannyDetector
from diffusers import FluxControlPipeline
from diffusers.utils import load_image
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("black-forest-labs/FLUX.1-Canny-dev-lora")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = CannyDetector()
control_image = processor(control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024)
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=50,
guidance_scale=30.0,
).images[0]
image.save("output.png")
Depth Control
Note: black-forest-labs/Flux.1-Depth-dev
is not a ControlNet model. ControlNetModel models are a separate component from the UNet/Transformer whose residuals are added to the actual underlying model. Depth Control is an alternate architecture that achieves effectively the same results as a ControlNet model would, by using channel-wise concatenation with input control condition and ensuring the transformer learns structure control by following the condition as closely as possible.
# !pip install git+https://github.com/huggingface/image_gen_aux
import torch
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-Depth-dev", torch_dtype=torch.bfloat16).to("cuda")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=30,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
Depth Control is also possible with a LoRA variant of this condition. The usage is as follows:
# !pip install git+https://github.com/huggingface/image_gen_aux
import torch
from diffusers import FluxControlPipeline, FluxTransformer2DModel
from diffusers.utils import load_image
from image_gen_aux import DepthPreprocessor
pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to("cuda")
pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora")
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=30,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
Redux
- Flux Redux pipeline is an adapter for FLUX.1 base models. It can be used with both flux-dev and flux-schnell, for image-to-image generation.
- You can first use the
FluxPriorReduxPipeline
to get theprompt_embeds
andpooled_prompt_embeds
, and then feed them into theFluxPipeline
for image-to-image generation. - When use
FluxPriorReduxPipeline
with a base pipeline, you can settext_encoder=None
andtext_encoder_2=None
in the base pipeline, in order to save VRAM.
import torch
from diffusers import FluxPriorReduxPipeline, FluxPipeline
from diffusers.utils import load_image
device = "cuda"
dtype = torch.bfloat16
repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
repo_base = "black-forest-labs/FLUX.1-dev"
pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
pipe = FluxPipeline.from_pretrained(
repo_base,
text_encoder=None,
text_encoder_2=None,
torch_dtype=torch.bfloat16
).to(device)
image = load_image("https://huggingface.co./datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png")
pipe_prior_output = pipe_prior_redux(image)
images = pipe(
guidance_scale=2.5,
num_inference_steps=50,
generator=torch.Generator("cpu").manual_seed(0),
**pipe_prior_output,
).images
images[0].save("flux-redux.png")
Combining Flux Turbo LoRAs with Flux Control, Fill, and Redux
We can combine Flux Turbo LoRAs with Flux Control and other pipelines like Fill and Redux to enable few-steps’ inference. The example below shows how to do that for Flux Control LoRA for depth and turbo LoRA from ByteDance/Hyper-SD
.
from diffusers import FluxControlPipeline
from image_gen_aux import DepthPreprocessor
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
import torch
control_pipe = FluxControlPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16)
control_pipe.load_lora_weights("black-forest-labs/FLUX.1-Depth-dev-lora", adapter_name="depth")
control_pipe.load_lora_weights(
hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
)
control_pipe.set_adapters(["depth", "hyper-sd"], adapter_weights=[0.85, 0.125])
control_pipe.enable_model_cpu_offload()
prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
control_image = load_image("https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/robot.png")
processor = DepthPreprocessor.from_pretrained("LiheYoung/depth-anything-large-hf")
control_image = processor(control_image)[0].convert("RGB")
image = control_pipe(
prompt=prompt,
control_image=control_image,
height=1024,
width=1024,
num_inference_steps=8,
guidance_scale=10.0,
generator=torch.Generator().manual_seed(42),
).images[0]
image.save("output.png")
Note about unload_lora_weights() when using Flux LoRAs
When unloading the Control LoRA weights, call pipe.unload_lora_weights(reset_to_overwritten_params=True)
to reset the pipe.transformer
completely back to its original form. The resultant pipeline can then be used with methods like DiffusionPipeline.from_pipe(). More details about this argument are available in this PR.
Running FP16 inference
Flux can generate high-quality images with FP16 (i.e. to accelerate inference on Turing/Volta GPUs) but produces different outputs compared to FP32/BF16. The issue is that some activations in the text encoders have to be clipped when running in FP16, which affects the overall image. Forcing text encoders to run with FP32 inference thus removes this output difference. See here for details.
FP16 inference code:
import torch
from diffusers import FluxPipeline
pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16) # can replace schnell with dev
# to run on low vram GPUs (i.e. between 4 and 32 GB VRAM)
pipe.enable_sequential_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(torch.float16) # casting here instead of in the pipeline constructor because doing so in the constructor loads all models into CPU memory at once
prompt = "A cat holding a sign that says hello world"
out = pipe(
prompt=prompt,
guidance_scale=0.,
height=768,
width=1360,
num_inference_steps=4,
max_sequence_length=256,
).images[0]
out.save("image.png")
Single File Loading for the FluxTransformer2DModel
The FluxTransformer2DModel
supports loading checkpoints in the original format shipped by Black Forest Labs. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
The following example demonstrates how to run Flux with less than 16GB of VRAM.
First install optimum-quanto
pip install optimum-quanto
Then run the following example
import torch
from diffusers import FluxTransformer2DModel, FluxPipeline
from transformers import T5EncoderModel, CLIPTextModel
from optimum.quanto import freeze, qfloat8, quantize
bfl_repo = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
transformer = FluxTransformer2DModel.from_single_file("https://huggingface.co./Kijai/flux-fp8/blob/main/flux1-dev-fp8.safetensors", torch_dtype=dtype)
quantize(transformer, weights=qfloat8)
freeze(transformer)
text_encoder_2 = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
quantize(text_encoder_2, weights=qfloat8)
freeze(text_encoder_2)
pipe = FluxPipeline.from_pretrained(bfl_repo, transformer=None, text_encoder_2=None, torch_dtype=dtype)
pipe.transformer = transformer
pipe.text_encoder_2 = text_encoder_2
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
guidance_scale=3.5,
output_type="pil",
num_inference_steps=20,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save("flux-fp8-dev.png")
FluxPipeline
class diffusers.FluxPipeline
< source >( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel image_encoder: CLIPVisionModelWithProjection = None feature_extractor: CLIPImageProcessor = None )
Parameters
- transformer (FluxTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
) — Second Tokenizer of class T5TokenizerFast.
The Flux pipeline for text-to-image generation.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None negative_prompt: typing.Union[str, typing.List[str]] = None negative_prompt_2: typing.Union[str, typing.List[str], NoneType] = None true_cfg_scale: float = 1.0 height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 28 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 3.5 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None ip_adapter_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor], NoneType] = None ip_adapter_image_embeds: typing.Optional[typing.List[torch.Tensor]] = None negative_ip_adapter_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor], NoneType] = None negative_ip_adapter_image_embeds: typing.Optional[typing.List[torch.Tensor]] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - ip_adapter_image — (
PipelineImageInput
, optional): Optional image input to work with IP Adapters. - ip_adapter_image_embeds (
List[torch.Tensor]
, optional) — Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape(batch_size, num_images, emb_dim)
. If not provided, embeddings are computed from theip_adapter_image
input argument. - negative_ip_adapter_image —
(
PipelineImageInput
, optional): Optional image input to work with IP Adapters. - negative_ip_adapter_image_embeds (
List[torch.Tensor]
, optional) — Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of IP-adapters. Each element should be a tensor of shape(batch_size, num_images, emb_dim)
. If not provided, embeddings are computed from theip_adapter_image
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 512) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import FluxPipeline
>>> pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "A cat holding a sign that says hello world"
>>> # Depending on the variant being used, the pipeline call will slightly vary.
>>> # Refer to the pipeline documentation for more details.
>>> image = pipe(prompt, num_inference_steps=4, guidance_scale=0.0).images[0]
>>> image.save("flux.png")
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
FluxImg2ImgPipeline
class diffusers.FluxImg2ImgPipeline
< source >( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel )
Parameters
- transformer (FluxTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
) — Second Tokenizer of class T5TokenizerFast.
The Flux pipeline for image inpainting.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None strength: float = 0.6 num_inference_steps: int = 28 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 7.0 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between[0, 1]
If it’s a tensor or a list or tensors, the expected shape should be(B, C, H, W)
or(C, H, W)
. If it is a numpy array or a list of arrays, the expected shape should be(B, H, W, C)
or(H, W, C)
It can also accept image latents asimage
, but if passing latents directly it is not encoded again. - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - strength (
float
, optional, defaults to 1.0) — Indicates extent to transform the referenceimage
. Must be between 0 and 1.image
is used as a starting point and more noise is added the higher thestrength
. The number of denoising steps depends on the amount of noise initially added. Whenstrength
is 1, added noise is maximum and the denoising process runs for the full number of iterations specified innum_inference_steps
. A value of 1 essentially ignoresimage
. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 512) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import FluxImg2ImgPipeline
>>> from diffusers.utils import load_image
>>> device = "cuda"
>>> pipe = FluxImg2ImgPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
>>> pipe = pipe.to(device)
>>> url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
>>> init_image = load_image(url).resize((1024, 1024))
>>> prompt = "cat wizard, gandalf, lord of the rings, detailed, fantasy, cute, adorable, Pixar, Disney, 8k"
>>> images = pipe(
... prompt=prompt, image=init_image, num_inference_steps=4, strength=0.95, guidance_scale=0.0
... ).images[0]
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
FluxInpaintPipeline
class diffusers.FluxInpaintPipeline
< source >( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel )
Parameters
- transformer (FluxTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
) — Second Tokenizer of class T5TokenizerFast.
The Flux pipeline for image inpainting.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None mask_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None masked_image_latents: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None padding_mask_crop: typing.Optional[int] = None strength: float = 0.6 num_inference_steps: int = 28 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 7.0 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between[0, 1]
If it’s a tensor or a list or tensors, the expected shape should be(B, C, H, W)
or(C, H, W)
. If it is a numpy array or a list of arrays, the expected shape should be(B, H, W, C)
or(H, W, C)
It can also accept image latents asimage
, but if passing latents directly it is not encoded again. - mask_image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to maskimage
. White pixels in the mask are repainted while black pixels are preserved. Ifmask_image
is a PIL image, it is converted to a single channel (luminance) before use. If it’s a numpy array or pytorch tensor, it should contain one color channel (L) instead of 3, so the expected shape for pytorch tensor would be(B, 1, H, W)
,(B, H, W)
,(1, H, W)
,(H, W)
. And for numpy array would be for(B, H, W, 1)
,(B, H, W)
,(H, W, 1)
, or(H, W)
. - mask_image_latent (
torch.Tensor
,List[torch.Tensor]
) —Tensor
representing an image batch to maskimage
generated by VAE. If not provided, the mask latents tensor will ge generated bymask_image
. - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - padding_mask_crop (
int
, optional, defaults toNone
) — The size of margin in the crop to be applied to the image and masking. IfNone
, no crop is applied to image and mask_image. Ifpadding_mask_crop
is notNone
, it will first find a rectangular region with the same aspect ration of the image and contains all masked area, and then expand that area based onpadding_mask_crop
. The image and mask_image will then be cropped based on the expanded area before resizing to the original image size for inpainting. This is useful when the masked area is small while the image is large and contain information irrelevant for inpainting, such as background. - strength (
float
, optional, defaults to 1.0) — Indicates extent to transform the referenceimage
. Must be between 0 and 1.image
is used as a starting point and more noise is added the higher thestrength
. The number of denoising steps depends on the amount of noise initially added. Whenstrength
is 1, added noise is maximum and the denoising process runs for the full number of iterations specified innum_inference_steps
. A value of 1 essentially ignoresimage
. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 512) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import FluxInpaintPipeline
>>> from diffusers.utils import load_image
>>> pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16)
>>> pipe.to("cuda")
>>> prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
>>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
>>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
>>> source = load_image(img_url)
>>> mask = load_image(mask_url)
>>> image = pipe(prompt=prompt, image=source, mask_image=mask).images[0]
>>> image.save("flux_inpainting.png")
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
FluxControlNetInpaintPipeline
class diffusers.FluxControlNetInpaintPipeline
< source >( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel controlnet: typing.Union[diffusers.models.controlnets.controlnet_flux.FluxControlNetModel, typing.List[diffusers.models.controlnets.controlnet_flux.FluxControlNetModel], typing.Tuple[diffusers.models.controlnets.controlnet_flux.FluxControlNetModel], diffusers.models.controlnets.controlnet_flux.FluxMultiControlNetModel] )
Parameters
- transformer (FluxTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
) — Second Tokenizer of class T5TokenizerFast.
The Flux controlnet pipeline for inpainting.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None mask_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None masked_image_latents: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None control_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None strength: float = 0.6 padding_mask_crop: typing.Optional[int] = None sigmas: typing.Optional[typing.List[float]] = None num_inference_steps: int = 28 guidance_scale: float = 7.0 control_guidance_start: typing.Union[float, typing.List[float]] = 0.0 control_guidance_end: typing.Union[float, typing.List[float]] = 1.0 control_mode: typing.Union[int, typing.List[int], NoneType] = None controlnet_conditioning_scale: typing.Union[float, typing.List[float]] = 1.0 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. - image (
PIL.Image.Image
orList[PIL.Image.Image]
ortorch.FloatTensor
) — The image(s) to inpaint. - mask_image (
PIL.Image.Image
orList[PIL.Image.Image]
ortorch.FloatTensor
) — The mask image(s) to use for inpainting. White pixels in the mask will be repainted, while black pixels will be preserved. - masked_image_latents (
torch.FloatTensor
, optional) — Pre-generated masked image latents. - control_image (
PIL.Image.Image
orList[PIL.Image.Image]
ortorch.FloatTensor
) — The ControlNet input condition. Image to control the generation. - height (
int
, optional, defaults to self.default_sample_size * self.vae_scale_factor) — The height in pixels of the generated image. - width (
int
, optional, defaults to self.default_sample_size * self.vae_scale_factor) — The width in pixels of the generated image. - strength (
float
, optional, defaults to 0.6) — Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. - padding_mask_crop (
int
, optional) — The size of the padding to use when cropping the mask. - num_inference_steps (
int
, optional, defaults to 28) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance. - control_guidance_start (
float
orList[float]
, optional, defaults to 0.0) — The percentage of total steps at which the ControlNet starts applying. - control_guidance_end (
float
orList[float]
, optional, defaults to 1.0) — The percentage of total steps at which the ControlNet stops applying. - control_mode (
int
orList[int]
, optional) — The mode for the ControlNet. If multiple ControlNets are used, this should be a list. - controlnet_conditioning_scale (
float
orList[float]
, optional, defaults to 1.0) — The outputs of the ControlNet are multiplied bycontrolnet_conditioning_scale
before they are added to the residual in the original transformer. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or more torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose betweenPIL.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — Additional keyword arguments to be passed to the joint attention mechanism. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising step during the inference. - callback_on_step_end_tensor_inputs (
List[str]
, optional) — The list of tensor inputs for thecallback_on_step_end
function. - max_sequence_length (
int
, optional, defaults to 512) — The maximum length of the sequence to be generated.
Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import FluxControlNetInpaintPipeline
>>> from diffusers.models import FluxControlNetModel
>>> from diffusers.utils import load_image
>>> controlnet = FluxControlNetModel.from_pretrained(
... "InstantX/FLUX.1-dev-controlnet-canny", torch_dtype=torch.float16
... )
>>> pipe = FluxControlNetInpaintPipeline.from_pretrained(
... "black-forest-labs/FLUX.1-schnell", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> control_image = load_image(
... "https://huggingface.co./InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg"
... )
>>> init_image = load_image(
... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
... )
>>> mask_image = load_image(
... "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
... )
>>> prompt = "A girl holding a sign that says InstantX"
>>> image = pipe(
... prompt,
... image=init_image,
... mask_image=mask_image,
... control_image=control_image,
... control_guidance_start=0.2,
... control_guidance_end=0.8,
... controlnet_conditioning_scale=0.7,
... strength=0.7,
... num_inference_steps=28,
... guidance_scale=3.5,
... ).images[0]
>>> image.save("flux_controlnet_inpaint.png")
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
FluxControlNetImg2ImgPipeline
class diffusers.FluxControlNetImg2ImgPipeline
< source >( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel controlnet: typing.Union[diffusers.models.controlnets.controlnet_flux.FluxControlNetModel, typing.List[diffusers.models.controlnets.controlnet_flux.FluxControlNetModel], typing.Tuple[diffusers.models.controlnets.controlnet_flux.FluxControlNetModel], diffusers.models.controlnets.controlnet_flux.FluxMultiControlNetModel] )
Parameters
- transformer (FluxTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
) — Second Tokenizer of class T5TokenizerFast.
The Flux controlnet pipeline for image-to-image generation.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None control_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None strength: float = 0.6 num_inference_steps: int = 28 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 7.0 control_guidance_start: typing.Union[float, typing.List[float]] = 0.0 control_guidance_end: typing.Union[float, typing.List[float]] = 1.0 control_mode: typing.Union[int, typing.List[int], NoneType] = None controlnet_conditioning_scale: typing.Union[float, typing.List[float]] = 1.0 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. - image (
PIL.Image.Image
orList[PIL.Image.Image]
ortorch.FloatTensor
) — The image(s) to modify with the pipeline. - control_image (
PIL.Image.Image
orList[PIL.Image.Image]
ortorch.FloatTensor
) — The ControlNet input condition. Image to control the generation. - height (
int
, optional, defaults to self.default_sample_size * self.vae_scale_factor) — The height in pixels of the generated image. - width (
int
, optional, defaults to self.default_sample_size * self.vae_scale_factor) — The width in pixels of the generated image. - strength (
float
, optional, defaults to 0.6) — Conceptually, indicates how much to transform the referenceimage
. Must be between 0 and 1. - num_inference_steps (
int
, optional, defaults to 28) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance. - control_mode (
int
orList[int]
, optional) — The mode for the ControlNet. If multiple ControlNets are used, this should be a list. - controlnet_conditioning_scale (
float
orList[float]
, optional, defaults to 1.0) — The outputs of the ControlNet are multiplied bycontrolnet_conditioning_scale
before they are added to the residual in the original transformer. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or more torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose betweenPIL.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — Additional keyword arguments to be passed to the joint attention mechanism. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising step during the inference. - callback_on_step_end_tensor_inputs (
List[str]
, optional) — The list of tensor inputs for thecallback_on_step_end
function. - max_sequence_length (
int
, optional, defaults to 512) — The maximum length of the sequence to be generated.
Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import FluxControlNetImg2ImgPipeline, FluxControlNetModel
>>> from diffusers.utils import load_image
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> controlnet = FluxControlNetModel.from_pretrained(
... "InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16
... )
>>> pipe = FluxControlNetImg2ImgPipeline.from_pretrained(
... "black-forest-labs/FLUX.1-schnell", controlnet=controlnet, torch_dtype=torch.float16
... )
>>> pipe.text_encoder.to(torch.float16)
>>> pipe.controlnet.to(torch.float16)
>>> pipe.to("cuda")
>>> control_image = load_image("https://huggingface.co./InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
>>> init_image = load_image(
... "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg"
... )
>>> prompt = "A girl in city, 25 years old, cool, futuristic"
>>> image = pipe(
... prompt,
... image=init_image,
... control_image=control_image,
... control_guidance_start=0.2,
... control_guidance_end=0.8,
... controlnet_conditioning_scale=1.0,
... strength=0.7,
... num_inference_steps=2,
... guidance_scale=3.5,
... ).images[0]
>>> image.save("flux_controlnet_img2img.png")
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
FluxControlPipeline
class diffusers.FluxControlPipeline
< source >( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel )
Parameters
- transformer (FluxTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
) — Second Tokenizer of class T5TokenizerFast.
The Flux pipeline for controllable text-to-image generation.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None control_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 28 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 3.5 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - control_image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
,List[np.ndarray]
, —List[List[torch.Tensor]]
,List[List[np.ndarray]]
orList[List[PIL.Image.Image]]
): The ControlNet input condition to provide guidance to theunet
for generation. If the type is specified astorch.Tensor
, it is passed to ControlNet as is.PIL.Image.Image
can also be accepted as an image. The dimensions of the output image defaults toimage
’s dimensions. If height and/or width are passed,image
is resized accordingly. If multiple ControlNets are specified ininit
, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 512) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from controlnet_aux import CannyDetector
>>> from diffusers import FluxControlPipeline
>>> from diffusers.utils import load_image
>>> pipe = FluxControlPipeline.from_pretrained(
... "black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16
... ).to("cuda")
>>> prompt = "A robot made of exotic candies and chocolates of different kinds. The background is filled with confetti and celebratory gifts."
>>> control_image = load_image(
... "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/robot.png"
... )
>>> processor = CannyDetector()
>>> control_image = processor(
... control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024
... )
>>> image = pipe(
... prompt=prompt,
... control_image=control_image,
... height=1024,
... width=1024,
... num_inference_steps=50,
... guidance_scale=30.0,
... ).images[0]
>>> image.save("output.png")
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
FluxControlImg2ImgPipeline
class diffusers.FluxControlImg2ImgPipeline
< source >( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel )
Parameters
- transformer (FluxTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
) — Second Tokenizer of class T5TokenizerFast.
The Flux pipeline for image inpainting.
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None control_image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None strength: float = 0.6 num_inference_steps: int = 28 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 7.0 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between[0, 1]
If it’s a tensor or a list or tensors, the expected shape should be(B, C, H, W)
or(C, H, W)
. If it is a numpy array or a list of arrays, the expected shape should be(B, H, W, C)
or(H, W, C)
It can also accept image latents asimage
, but if passing latents directly it is not encoded again. - control_image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
,List[np.ndarray]
, —List[List[torch.Tensor]]
,List[List[np.ndarray]]
orList[List[PIL.Image.Image]]
): The ControlNet input condition to provide guidance to theunet
for generation. If the type is specified astorch.Tensor
, it is passed to ControlNet as is.PIL.Image.Image
can also be accepted as an image. The dimensions of the output image defaults toimage
’s dimensions. If height and/or width are passed,image
is resized accordingly. If multiple ControlNets are specified ininit
, images must be passed as a list such that each element of the list can be correctly batched for input to a single ControlNet. - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - strength (
float
, optional, defaults to 1.0) — Indicates extent to transform the referenceimage
. Must be between 0 and 1.image
is used as a starting point and more noise is added the higher thestrength
. The number of denoising steps depends on the amount of noise initially added. Whenstrength
is 1, added noise is maximum and the denoising process runs for the full number of iterations specified innum_inference_steps
. A value of 1 essentially ignoresimage
. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 512) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from controlnet_aux import CannyDetector
>>> from diffusers import FluxControlImg2ImgPipeline
>>> from diffusers.utils import load_image
>>> pipe = FluxControlImg2ImgPipeline.from_pretrained(
... "black-forest-labs/FLUX.1-Canny-dev", torch_dtype=torch.bfloat16
... ).to("cuda")
>>> prompt = "A robot made of exotic candies and chocolates of different kinds. Abstract background"
>>> image = load_image(
... "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/watercolor-painting.jpg"
... )
>>> control_image = load_image(
... "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/robot.png"
... )
>>> processor = CannyDetector()
>>> control_image = processor(
... control_image, low_threshold=50, high_threshold=200, detect_resolution=1024, image_resolution=1024
... )
>>> image = pipe(
... prompt=prompt,
... image=image,
... control_image=control_image,
... strength=0.8,
... height=1024,
... width=1024,
... num_inference_steps=50,
... guidance_scale=30.0,
... ).images[0]
>>> image.save("output.png")
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
FluxPriorReduxPipeline
class diffusers.FluxPriorReduxPipeline
< source >( image_encoder: SiglipVisionModel feature_extractor: SiglipImageProcessor image_embedder: ReduxImageEncoder text_encoder: CLIPTextModel = None tokenizer: CLIPTokenizer = None text_encoder_2: T5EncoderModel = None tokenizer_2: T5TokenizerFast = None )
Parameters
- image_encoder (
SiglipVisionModel
) — SIGLIP vision model to encode the input image. - feature_extractor (
SiglipImageProcessor
) — Image processor for preprocessing images for the SIGLIP model. - image_embedder (
ReduxImageEncoder
) — Redux image encoder to process the SIGLIP embeddings. - text_encoder (
CLIPTextModel
, optional) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
, optional) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
, optional) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
, optional) — Second Tokenizer of class T5TokenizerFast.
The Flux Redux pipeline for image-to-image generation.
Reference: https://blackforestlabs.ai/flux-1-tools/
__call__
< source >( image: typing.Union[PIL.Image.Image, numpy.ndarray, torch.Tensor, typing.List[PIL.Image.Image], typing.List[numpy.ndarray], typing.List[torch.Tensor]] prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None prompt_embeds_scale: typing.Union[float, typing.List[float], NoneType] = 1.0 pooled_prompt_embeds_scale: typing.Union[float, typing.List[float], NoneType] = 1.0 return_dict: bool = True ) → ~pipelines.flux.FluxPriorReduxPipelineOutput
or tuple
Parameters
- image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between[0, 1]
If it’s a tensor or a list or tensors, the expected shape should be(B, C, H, W)
or(C, H, W)
. If it is a numpy array or a list of arrays, the expected shape should be(B, H, W, C)
or(H, W, C)
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. experimental feature: to use this feature, make sure to explicitly load text encoders to the pipeline. Prompts will be ignored if text encoders are not loaded. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPriorReduxPipelineOutput
instead of a plain tuple.
Returns
~pipelines.flux.FluxPriorReduxPipelineOutput
or tuple
~pipelines.flux.FluxPriorReduxPipelineOutput
if return_dict
is True, otherwise a tuple
. When
returning a tuple, the first element is a list with the generated images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import FluxPriorReduxPipeline, FluxPipeline
>>> from diffusers.utils import load_image
>>> device = "cuda"
>>> dtype = torch.bfloat16
>>> repo_redux = "black-forest-labs/FLUX.1-Redux-dev"
>>> repo_base = "black-forest-labs/FLUX.1-dev"
>>> pipe_prior_redux = FluxPriorReduxPipeline.from_pretrained(repo_redux, torch_dtype=dtype).to(device)
>>> pipe = FluxPipeline.from_pretrained(
... repo_base, text_encoder=None, text_encoder_2=None, torch_dtype=torch.bfloat16
... ).to(device)
>>> image = load_image(
... "https://huggingface.co./datasets/YiYiXu/testing-images/resolve/main/style_ziggy/img5.png"
... )
>>> pipe_prior_output = pipe_prior_redux(image)
>>> images = pipe(
... guidance_scale=2.5,
... num_inference_steps=50,
... generator=torch.Generator("cpu").manual_seed(0),
... **pipe_prior_output,
... ).images
>>> images[0].save("flux-redux.png")
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
FluxFillPipeline
class diffusers.FluxFillPipeline
< source >( scheduler: FlowMatchEulerDiscreteScheduler vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer text_encoder_2: T5EncoderModel tokenizer_2: T5TokenizerFast transformer: FluxTransformer2DModel )
Parameters
- transformer (FluxTransformer2DModel) — Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
- scheduler (FlowMatchEulerDiscreteScheduler) —
A scheduler to be used in combination with
transformer
to denoise the encoded image latents. - vae (AutoencoderKL) — Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
- text_encoder (
CLIPTextModel
) — CLIP, specifically the clip-vit-large-patch14 variant. - text_encoder_2 (
T5EncoderModel
) — T5, specifically the google/t5-v1_1-xxl variant. - tokenizer (
CLIPTokenizer
) — Tokenizer of class CLIPTokenizer. - tokenizer_2 (
T5TokenizerFast
) — Second Tokenizer of class T5TokenizerFast.
The Flux Fill pipeline for image inpainting/outpainting.
Reference: https://blackforestlabs.ai/flux-1-tools/
__call__
< source >( prompt: typing.Union[str, typing.List[str]] = None prompt_2: typing.Union[str, typing.List[str], NoneType] = None image: typing.Optional[torch.FloatTensor] = None mask_image: typing.Optional[torch.FloatTensor] = None masked_image_latents: typing.Optional[torch.FloatTensor] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 50 sigmas: typing.Optional[typing.List[float]] = None guidance_scale: float = 30.0 num_images_per_prompt: typing.Optional[int] = 1 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True joint_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None callback_on_step_end: typing.Optional[typing.Callable[[int, int, typing.Dict], NoneType]] = None callback_on_step_end_tensor_inputs: typing.List[str] = ['latents'] max_sequence_length: int = 512 ) → ~pipelines.flux.FluxPipelineOutput
or tuple
Parameters
- prompt (
str
orList[str]
, optional) — The prompt or prompts to guide the image generation. If not defined, one has to passprompt_embeds
. instead. - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent totokenizer_2
andtext_encoder_2
. If not defined,prompt
is will be used instead - image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to be used as the starting point. For both numpy array and pytorch tensor, the expected value range is between[0, 1]
If it’s a tensor or a list or tensors, the expected shape should be(B, C, H, W)
or(C, H, W)
. If it is a numpy array or a list of arrays, the expected shape should be(B, H, W, C)
or(H, W, C)
. - mask_image (
torch.Tensor
,PIL.Image.Image
,np.ndarray
,List[torch.Tensor]
,List[PIL.Image.Image]
, orList[np.ndarray]
) —Image
, numpy array or tensor representing an image batch to maskimage
. White pixels in the mask are repainted while black pixels are preserved. Ifmask_image
is a PIL image, it is converted to a single channel (luminance) before use. If it’s a numpy array or pytorch tensor, it should contain one color channel (L) instead of 3, so the expected shape for pytorch tensor would be(B, 1, H, W)
,(B, H, W)
,(1, H, W)
,(H, W)
. And for numpy array would be for(B, H, W, 1)
,(B, H, W)
,(H, W, 1)
, or(H, W)
. - mask_image_latent (
torch.Tensor
,List[torch.Tensor]
) —Tensor
representing an image batch to maskimage
generated by VAE. If not provided, the mask latents tensor will ge generated bymask_image
. - height (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image. This is set to 1024 by default for the best results. - width (
int
, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image. This is set to 1024 by default for the best results. - num_inference_steps (
int
, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. - sigmas (
List[float]
, optional) — Custom sigmas to use for the denoising process with schedulers which support asigmas
argument in theirset_timesteps
method. If not defined, the default behavior whennum_inference_steps
is passed will be used. - guidance_scale (
float
, optional, defaults to 7.0) — Guidance scale as defined in Classifier-Free Diffusion Guidance.guidance_scale
is defined asw
of equation 2. of Imagen Paper. Guidance scale is enabled by settingguidance_scale > 1
. Higher guidance scale encourages to generate images that are closely linked to the textprompt
, usually at the expense of lower image quality. - num_images_per_prompt (
int
, optional, defaults to 1) — The number of images to generate per prompt. - generator (
torch.Generator
orList[torch.Generator]
, optional) — One or a list of torch generator(s) to make generation deterministic. - latents (
torch.FloatTensor
, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied randomgenerator
. - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - output_type (
str
, optional, defaults to"pil"
) — The output format of the generate image. Choose between PIL:PIL.Image.Image
ornp.array
. - return_dict (
bool
, optional, defaults toTrue
) — Whether or not to return a~pipelines.flux.FluxPipelineOutput
instead of a plain tuple. - joint_attention_kwargs (
dict
, optional) — A kwargs dictionary that if specified is passed along to theAttentionProcessor
as defined underself.processor
in diffusers.models.attention_processor. - callback_on_step_end (
Callable
, optional) — A function that calls at the end of each denoising steps during the inference. The function is called with the following arguments:callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)
.callback_kwargs
will include a list of all tensors as specified bycallback_on_step_end_tensor_inputs
. - callback_on_step_end_tensor_inputs (
List
, optional) — The list of tensor inputs for thecallback_on_step_end
function. The tensors specified in the list will be passed ascallback_kwargs
argument. You will only be able to include variables listed in the._callback_tensor_inputs
attribute of your pipeline class. - max_sequence_length (
int
defaults to 512) — Maximum sequence length to use with theprompt
.
Returns
~pipelines.flux.FluxPipelineOutput
or tuple
~pipelines.flux.FluxPipelineOutput
if return_dict
is True, otherwise a tuple
. When returning a tuple, the first element is a list with the generated
images.
Function invoked when calling the pipeline for generation.
Examples:
>>> import torch
>>> from diffusers import FluxFillPipeline
>>> from diffusers.utils import load_image
>>> image = load_image("https://huggingface.co./datasets/YiYiXu/testing-images/resolve/main/cup.png")
>>> mask = load_image("https://huggingface.co./datasets/YiYiXu/testing-images/resolve/main/cup_mask.png")
>>> pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16)
>>> pipe.enable_model_cpu_offload() # save some VRAM by offloading the model to CPU
>>> image = pipe(
... prompt="a white paper cup",
... image=image,
... mask_image=mask,
... height=1632,
... width=1232,
... guidance_scale=30,
... num_inference_steps=50,
... max_sequence_length=512,
... generator=torch.Generator("cpu").manual_seed(0),
... ).images[0]
>>> image.save("flux_fill.png")
Disable sliced VAE decoding. If enable_vae_slicing
was previously enabled, this method will go back to
computing decoding in one step.
Disable tiled VAE decoding. If enable_vae_tiling
was previously enabled, this method will go back to
computing decoding in one step.
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow processing larger images.
encode_prompt
< source >( prompt: typing.Union[str, typing.List[str]] prompt_2: typing.Union[str, typing.List[str]] device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None max_sequence_length: int = 512 lora_scale: typing.Optional[float] = None )
Parameters
- prompt (
str
orList[str]
, optional) — prompt to be encoded - prompt_2 (
str
orList[str]
, optional) — The prompt or prompts to be sent to thetokenizer_2
andtext_encoder_2
. If not defined,prompt
is used in all text-encoders - device — (
torch.device
): torch device - num_images_per_prompt (
int
) — number of images that should be generated per prompt - prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated fromprompt
input argument. - pooled_prompt_embeds (
torch.FloatTensor
, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated fromprompt
input argument. - lora_scale (
float
, optional) — A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.