Diffusers documentation

Stable diffusion XL

You are viewing v0.18.2 version. A newer version v0.32.2 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Stable diffusion XL

Stable Diffusion XL was proposed in SDXL: Improving Latent Diffusion Models for High-Resolution Image Synthesis by Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe Penna, Robin Rombach

The abstract of the paper is the following:

We present SDXL, a latent diffusion model for text-to-image synthesis. Compared to previous versions of Stable Diffusion, SDXL leverages a three times larger UNet backbone: The increase of model parameters is mainly due to more attention blocks and a larger cross-attention context as SDXL uses a second text encoder. We design multiple novel conditioning schemes and train SDXL on multiple aspect ratios. We also introduce a refinement model which is used to improve the visual fidelity of samples generated by SDXL using a post-hoc image-to-image technique. We demonstrate that SDXL shows drastically improved performance compared the previous versions of Stable Diffusion and achieves results competitive with those of black-box state-of-the-art image generators.

Tips

  • Stable Diffusion XL works especially well with images between 768 and 1024.
  • Stable Diffusion XL output image can be improved by making use of a refiner as shown below.

Available checkpoints:

Usage Example

Before using SDXL make sure to have transformers, accelerate, safetensors and invisible_watermark installed. You can install the libraries as follows:

pip install transformers
pip install accelerate
pip install safetensors
pip install invisible-watermark>=2.0

Text-to-Image

You can use SDXL as follows for text-to-image:

from diffusers import StableDiffusionXLPipeline
import torch

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe.to("cuda")

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
image = pipe(prompt=prompt).images[0]

Refining the image output

The image can be refined by making use of stabilityai/stable-diffusion-xl-refiner-0.9. In this case, you only have to output the latents from the base model.

from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import torch

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe.to("cuda")

use_refiner = True
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
)
refiner.to("cuda")

prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"

image = pipe(prompt=prompt, output_type="latent" if use_refiner else "pil").images[0]
image = refiner(prompt=prompt, image=image[None, :]).images[0]

Image-to-image

import torch
from diffusers import StableDiffusionXLImg2ImgPipeline
from diffusers.utils import load_image

pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16
)
pipe = pipe.to("cuda")
url = "https://huggingface.co./datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"

init_image = load_image(url).convert("RGB")
prompt = "a photo of an astronaut riding a horse on mars"
image = pipe(prompt, image=init_image).images[0]
Original Image Refined Image

Loading single file checkpoints / original file format

By making use of from_single_file() you can also load the original file format into diffusers:

from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
import torch

pipe = StableDiffusionXLPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
)
pipe.to("cuda")

refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16"
)
refiner.to("cuda")

Memory optimization via model offloading

If you are seeing out-of-memory errors, we recommend making use of StableDiffusionXLPipeline.enable_model_cpu_offload().

- pipe.to("cuda")
+ pipe.enable_model_cpu_offload()

and

- refiner.to("cuda")
+ refiner.enable_model_cpu_offload()

Speed-up inference with torch.compile

You can speed up inference by making use of torch.compile. This should give you ca. 20% speed-up.

+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
+ refiner.unet = torch.compile(refiner.unet, mode="reduce-overhead", fullgraph=True)

Running with torch \< 2.0

Note that if you want to run Stable Diffusion XL with torch < 2.0, please make sure to enable xformers attention:

pip install xformers
+pipe.enable_xformers_memory_efficient_attention()
+refiner.enable_xformers_memory_efficient_attention()

StableDiffusionXLPipeline

class diffusers.StableDiffusionXLPipeline

< >

( vae: AutoencoderKL text_encoder: CLIPTextModel text_encoder_2: CLIPTextModelWithProjection tokenizer: CLIPTokenizer tokenizer_2: CLIPTokenizer unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers force_zeros_for_empty_prompt: bool = True )

Parameters

Pipeline for text-to-image generation using Stable Diffusion.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

In addition the pipeline inherits the following loading methods:

as well as the following saving methods:

__call__

< >

( prompt: typing.Union[str, typing.List[str]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_inference_steps: int = 50 guidance_scale: float = 5.0 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 eta: float = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None callback_steps: int = 1 cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None guidance_rescale: float = 0.0 original_size: typing.Union[typing.Tuple[int, int], NoneType] = None crops_coords_top_left: typing.Tuple[int, int] = (0, 0) target_size: typing.Union[typing.Tuple[int, int], NoneType] = None ) ~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput or tuple

Parameters

  • prompt (str or List[str], optional) — The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.
  • height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated image.
  • width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated image.
  • num_inference_steps (int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
  • guidance_scale (float, optional, defaults to 7.5) — Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.
  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).
  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.
  • eta (float, optional, defaults to 0.0) — Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.
  • generator (torch.Generator or List[torch.Generator], optional) — One or a list of torch generator(s) to make generation deterministic.
  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.
  • prompt_embeds (torch.FloatTensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.
  • negative_prompt_embeds (torch.FloatTensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
  • pooled_prompt_embeds (torch.FloatTensor, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.
  • negative_pooled_prompt_embeds (torch.FloatTensor, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.
  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.
  • return_dict (bool, optional, defaults to True) — Whether or not to return a ~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput instead of a plain tuple.
  • callback (Callable, optional) — A function that will be called every callback_steps steps during inference. The function will be called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).
  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function will be called. If not specified, the callback will be called at every step.
  • cross_attention_kwargs (dict, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.cross_attention.
  • guidance_rescale (float, optional, defaults to 0.7) — Guidance rescale factor proposed by Common Diffusion Noise Schedules and Sample Steps are Flawed guidance_scale is defined as φ in equation 16. of Common Diffusion Noise Schedules and Sample Steps are Flawed. Guidance rescale factor should fix overexposure when using zero terminal SNR.
  • original_size (Tuple[int], optional, defaults to (1024, 1024)) — TODO
  • crops_coords_top_left (Tuple[int], optional, defaults to (0, 0)) — TODO
  • target_size (Tuple[int], optional, defaults to (1024, 1024)) — TODO

Returns

~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput or tuple

~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the safety_checker`.

Function invoked when calling the pipeline for generation.

Examples:

>>> import torch
>>> from diffusers import StableDiffusionXLPipeline

>>> pipe = StableDiffusionXLPipeline.from_pretrained(
...     "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")

>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> image = pipe(prompt).images[0]

disable_vae_slicing

< >

( )

Disable sliced VAE decoding. If enable_vae_slicing was previously invoked, this method will go back to computing decoding in one step.

disable_vae_tiling

< >

( )

Disable tiled VAE decoding. If enable_vae_tiling was previously invoked, this method will go back to computing decoding in one step.

enable_model_cpu_offload

< >

( gpu_id = 0 )

Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to enable_sequential_cpu_offload, this method moves one whole model at a time to the GPU when its forward method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with enable_sequential_cpu_offload, but performance is much better due to the iterative execution of the unet.

enable_sequential_cpu_offload

< >

( gpu_id = 0 )

Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a torch.device('meta') and loaded to GPU only when their specific submodule has its forwardmethod called. Note that offloading happens on a submodule basis. Memory savings are higher than withenable_model_cpu_offload`, but performance is lower.

enable_vae_slicing

< >

( )

Enable sliced VAE decoding.

When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

enable_vae_tiling

< >

( )

Enable tiled VAE decoding.

When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful to save a large amount of memory and to allow the processing of larger images.

encode_prompt

< >

( prompt device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True negative_prompt = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None lora_scale: typing.Optional[float] = None )

Parameters

  • prompt (str or List[str], optional) — prompt to be encoded

Encodes the prompt into text encoder hidden states.

device: (torch.device): torch device num_images_per_prompt (int): number of images that should be generated per prompt do_classifier_free_guidance (bool): whether to use classifier free guidance or not negative_prompt (str or List[str], optional): The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). prompt_embeds (torch.FloatTensor, optional): Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument. pooled_prompt_embeds (torch.FloatTensor, optional): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument. negative_pooled_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument. lora_scale (float, optional): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

StableDiffusionXLImg2ImgPipeline

class diffusers.StableDiffusionXLImg2ImgPipeline

< >

( vae: AutoencoderKL text_encoder: CLIPTextModel text_encoder_2: CLIPTextModelWithProjection tokenizer: CLIPTokenizer tokenizer_2: CLIPTokenizer unet: UNet2DConditionModel scheduler: KarrasDiffusionSchedulers requires_aesthetics_score: bool = False force_zeros_for_empty_prompt: bool = True )

Parameters

Pipeline for text-to-image generation using Stable Diffusion.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods the library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

In addition the pipeline inherits the following loading methods:

as well as the following saving methods:

__call__

< >

( prompt: typing.Union[str, typing.List[str]] = None image: typing.Union[torch.FloatTensor, PIL.Image.Image, numpy.ndarray, typing.List[torch.FloatTensor], typing.List[PIL.Image.Image], typing.List[numpy.ndarray]] = None strength: float = 0.3 num_inference_steps: int = 50 guidance_scale: float = 5.0 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None num_images_per_prompt: typing.Optional[int] = 1 eta: float = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.FloatTensor] = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None output_type: typing.Optional[str] = 'pil' return_dict: bool = True callback: typing.Union[typing.Callable[[int, int, torch.FloatTensor], NoneType], NoneType] = None callback_steps: int = 1 cross_attention_kwargs: typing.Union[typing.Dict[str, typing.Any], NoneType] = None guidance_rescale: float = 0.0 original_size: typing.Tuple[int, int] = None crops_coords_top_left: typing.Tuple[int, int] = (0, 0) target_size: typing.Tuple[int, int] = None aesthetic_score: float = 6.0 negative_aesthetic_score: float = 2.5 ) ~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput or tuple

Parameters

  • prompt (str or List[str], optional) — The prompt or prompts to guide the image generation. If not defined, one has to pass prompt_embeds. instead.
  • image (torch.FloatTensor or PIL.Image.Image or np.ndarray or List[torch.FloatTensor] or List[PIL.Image.Image] or List[np.ndarray]) — The image(s) to modify with the pipeline.
  • strength (float, optional, defaults to 0.8) — Conceptually, indicates how much to transform the reference image. Must be between 0 and 1. image will be used as a starting point, adding more noise to it the larger the strength. The number of denoising steps depends on the amount of noise initially added. When strength is 1, added noise will be maximum and the denoising process will run for the full number of iterations specified in num_inference_steps. A value of 1, therefore, essentially ignores image.
  • num_inference_steps (int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference.
  • guidance_scale (float, optional, defaults to 7.5) — Guidance scale as defined in Classifier-Free Diffusion Guidance. guidance_scale is defined as w of equation 2. of Imagen Paper. Guidance scale is enabled by setting guidance_scale > 1. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality.
  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).
  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.
  • eta (float, optional, defaults to 0.0) — Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to schedulers.DDIMScheduler, will be ignored for others.
  • generator (torch.Generator or List[torch.Generator], optional) — One or a list of torch generator(s) to make generation deterministic.
  • latents (torch.FloatTensor, optional) — Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random generator.
  • prompt_embeds (torch.FloatTensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.
  • negative_prompt_embeds (torch.FloatTensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
  • pooled_prompt_embeds (torch.FloatTensor, optional) — Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument.
  • negative_pooled_prompt_embeds (torch.FloatTensor, optional) — Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument.
  • output_type (str, optional, defaults to "pil") — The output format of the generate image. Choose between PIL: PIL.Image.Image or np.array.
  • return_dict (bool, optional, defaults to True) — Whether or not to return a ~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput instead of a plain tuple.
  • callback (Callable, optional) — A function that will be called every callback_steps steps during inference. The function will be called with the following arguments: callback(step: int, timestep: int, latents: torch.FloatTensor).
  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function will be called. If not specified, the callback will be called at every step.
  • cross_attention_kwargs (dict, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined under self.processor in diffusers.cross_attention.
  • guidance_rescale (float, optional, defaults to 0.7) — Guidance rescale factor proposed by Common Diffusion Noise Schedules and Sample Steps are Flawed guidance_scale is defined as φ in equation 16. of Common Diffusion Noise Schedules and Sample Steps are Flawed. Guidance rescale factor should fix overexposure when using zero terminal SNR.
  • original_size (Tuple[int], optional, defaults to (1024, 1024)) — TODO
  • crops_coords_top_left (Tuple[int], optional, defaults to (0, 0)) — TODO
  • target_size (Tuple[int], optional, defaults to (1024, 1024)) — TODO
  • aesthetic_score (float, optional, defaults to 6.0) — TODO
  • negative_aesthetic_score (float, optional, defaults to 2.5) — TDOO

Returns

~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput or tuple

~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput if return_dict is True, otherwise a tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of bools denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the safety_checker`.

Function invoked when calling the pipeline for generation.

Examples:

>>> import torch
>>> from diffusers import StableDiffusionXLImg2ImgPipeline
>>> from diffusers.utils import load_image

>>> pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
...     "stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16
... )
>>> pipe = pipe.to("cuda")
>>> url = "https://huggingface.co./datasets/patrickvonplaten/images/resolve/main/aa_xl/000000009.png"

>>> init_image = load_image(url).convert("RGB")
>>> prompt = "a photo of an astronaut riding a horse on mars"
>>> image = pipe(prompt, image=init_image).images[0]

disable_vae_slicing

< >

( )

Disable sliced VAE decoding. If enable_vae_slicing was previously invoked, this method will go back to computing decoding in one step.

disable_vae_tiling

< >

( )

Disable tiled VAE decoding. If enable_vae_tiling was previously invoked, this method will go back to computing decoding in one step.

enable_model_cpu_offload

< >

( gpu_id = 0 )

Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared to enable_sequential_cpu_offload, this method moves one whole model at a time to the GPU when its forward method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with enable_sequential_cpu_offload, but performance is much better due to the iterative execution of the unet.

enable_sequential_cpu_offload

< >

( gpu_id = 0 )

Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet, text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a torch.device('meta') and loaded to GPU only when their specific submodule has its forwardmethod called. Note that offloading happens on a submodule basis. Memory savings are higher than withenable_model_cpu_offload`, but performance is lower.

enable_vae_slicing

< >

( )

Enable sliced VAE decoding.

When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.

enable_vae_tiling

< >

( )

Enable tiled VAE decoding.

When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in several steps. This is useful to save a large amount of memory and to allow the processing of larger images.

encode_prompt

< >

( prompt device: typing.Optional[torch.device] = None num_images_per_prompt: int = 1 do_classifier_free_guidance: bool = True negative_prompt = None prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_prompt_embeds: typing.Optional[torch.FloatTensor] = None pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None negative_pooled_prompt_embeds: typing.Optional[torch.FloatTensor] = None lora_scale: typing.Optional[float] = None )

Parameters

  • prompt (str or List[str], optional) — prompt to be encoded

Encodes the prompt into text encoder hidden states.

device: (torch.device): torch device num_images_per_prompt (int): number of images that should be generated per prompt do_classifier_free_guidance (bool): whether to use classifier free guidance or not negative_prompt (str or List[str], optional): The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1). prompt_embeds (torch.FloatTensor, optional): Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument. negative_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument. pooled_prompt_embeds (torch.FloatTensor, optional): Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled text embeddings will be generated from prompt input argument. negative_pooled_prompt_embeds (torch.FloatTensor, optional): Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, pooled negative_prompt_embeds will be generated from negative_prompt input argument. lora_scale (float, optional): A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.