커스텀 Diffusion 학습 예제
커스텀 Diffusion은 피사체의 이미지 몇 장(4~5장)만 주어지면 Stable Diffusion처럼 text-to-image 모델을 커스터마이징하는 방법입니다. ‘train_custom_diffusion.py’ 스크립트는 학습 과정을 구현하고 이를 Stable Diffusion에 맞게 조정하는 방법을 보여줍니다.
이 교육 사례는 Nupur Kumari가 제공하였습니다. (Custom Diffusion의 저자 중 한명).
로컬에서 PyTorch로 실행하기
Dependencies 설치하기
스크립트를 실행하기 전에 라이브러리의 학습 dependencies를 설치해야 합니다:
중요
예제 스크립트의 최신 버전을 성공적으로 실행하려면 소스로부터 설치하는 것을 매우 권장하며, 예제 스크립트를 자주 업데이트하는 만큼 일부 예제별 요구 사항을 설치하고 설치를 최신 상태로 유지하는 것이 좋습니다. 이를 위해 새 가상 환경에서 다음 단계를 실행하세요:
git clone https://github.com/huggingface/diffusers
cd diffusers
pip install -e .
example folder로 cd하여 이동하세요.
cd examples/custom_diffusion
이제 실행
pip install -r requirements.txt pip install clip-retrieval
그리고 🤗Accelerate 환경을 초기화:
accelerate config
또는 사용자 환경에 대한 질문에 답하지 않고 기본 가속 구성을 사용하려면 다음과 같이 하세요.
accelerate config default
또는 사용 중인 환경이 대화형 셸을 지원하지 않는 경우(예: jupyter notebook)
from accelerate.utils import write_basic_config
write_basic_config()
고양이 예제 😺
이제 데이터셋을 가져옵니다. 여기에서 데이터셋을 다운로드하고 압축을 풉니다. 직접 데이터셋을 사용하려면 학습용 데이터셋 생성하기 가이드를 참고하세요.
또한 ‘clip-retrieval’을 사용하여 200개의 실제 이미지를 수집하고, regularization으로서 이를 학습 데이터셋의 타겟 이미지와 결합합니다. 이렇게 하면 주어진 타겟 이미지에 대한 과적합을 방지할 수 있습니다. 다음 플래그를 사용하면 prior_loss_weight=1.
로 prior_preservation
, real_prior
regularization을 활성화할 수 있습니다.
클래스_프롬프트는 대상 이미지와 동일한 카테고리 이름이어야 합니다. 수집된 실제 이미지에는
class_prompt와 유사한 텍스트 캡션이 있습니다. 검색된 이미지는
class_data_dir에 저장됩니다. 생성된 이미지를 regularization으로 사용하기 위해
real_prior`를 비활성화할 수 있습니다. 실제 이미지를 수집하려면 훈련 전에 이 명령을 먼저 사용하십시오.
pip install clip-retrieval
python retrieve.py --class_prompt cat --class_data_dir real_reg/samples_cat --num_class_images 200
참고: stable-diffusion-2 768x768 모델을 사용하는 경우 ‘해상도’를 768로 변경하세요.
스크립트는 모델 체크포인트와 pytorch_custom_diffusion_weights.bin
파일을 생성하여 저장소에 저장합니다.
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"
export INSTANCE_DIR="./data/cat"
accelerate launch train_custom_diffusion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--class_data_dir=./real_reg/samples_cat/ \
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \
--class_prompt="cat" --num_class_images=200 \
--instance_prompt="photo of a <new1> cat" \
--resolution=512 \
--train_batch_size=2 \
--learning_rate=1e-5 \
--lr_warmup_steps=0 \
--max_train_steps=250 \
--scale_lr --hflip \
--modifier_token "<new1>" \
--push_to_hub
더 낮은 VRAM 요구 사항(GPU당 16GB)으로 더 빠르게 훈련하려면 --enable_xformers_memory_efficient_attention
을 사용하세요. 설치 방법은 가이드를 따르세요.
가중치 및 편향(wandb
)을 사용하여 실험을 추적하고 중간 결과를 저장하려면(강력히 권장합니다) 다음 단계를 따르세요:
wandb
설치:pip install wandb
.- 로그인 :
wandb login
. - 그런 다음 트레이닝을 시작하는 동안
validation_prompt
를 지정하고report_to
를wandb
로 설정합니다. 다음과 같은 관련 인수를 구성할 수도 있습니다:num_validation_images
validation_steps
accelerate launch train_custom_diffusion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--class_data_dir=./real_reg/samples_cat/ \
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \
--class_prompt="cat" --num_class_images=200 \
--instance_prompt="photo of a <new1> cat" \
--resolution=512 \
--train_batch_size=2 \
--learning_rate=1e-5 \
--lr_warmup_steps=0 \
--max_train_steps=250 \
--scale_lr --hflip \
--modifier_token "<new1>" \
--validation_prompt="<new1> cat sitting in a bucket" \
--report_to="wandb" \
--push_to_hub
다음은 Weights and Biases page의 예시이며, 여러 학습 세부 정보와 함께 중간 결과들을 확인할 수 있습니다.
--push_to_hub
를 지정하면 학습된 파라미터가 허깅 페이스 허브의 리포지토리에 푸시됩니다. 다음은 예제 리포지토리입니다.
멀티 컨셉에 대한 학습 🐱🪵
this와 유사하게 각 컨셉에 대한 정보가 포함된 json 파일을 제공합니다.
실제 이미지를 수집하려면 json 파일의 각 컨셉에 대해 이 명령을 실행합니다.
pip install clip-retrieval python retrieve.py --class_prompt {} --class_data_dir {} --num_class_images 200
그럼 우리는 학습시킬 준비가 되었습니다!
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"
accelerate launch train_custom_diffusion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--output_dir=$OUTPUT_DIR \
--concepts_list=./concept_list.json \
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \
--resolution=512 \
--train_batch_size=2 \
--learning_rate=1e-5 \
--lr_warmup_steps=0 \
--max_train_steps=500 \
--num_class_images=200 \
--scale_lr --hflip \
--modifier_token "<new1>+<new2>" \
--push_to_hub
다음은 Weights and Biases page의 예시이며, 다른 학습 세부 정보와 함께 중간 결과들을 확인할 수 있습니다.
사람 얼굴에 대한 학습
사람 얼굴에 대한 파인튜닝을 위해 다음과 같은 설정이 더 효과적이라는 것을 확인했습니다: learning_rate=5e-6
, max_train_steps=1000 to 2000
, freeze_model=crossattn
을 최소 15~20개의 이미지로 설정합니다.
실제 이미지를 수집하려면 훈련 전에 이 명령을 먼저 사용하십시오.
pip install clip-retrieval python retrieve.py --class_prompt person --class_data_dir real_reg/samples_person --num_class_images 200
이제 학습을 시작하세요!
export MODEL_NAME="CompVis/stable-diffusion-v1-4"
export OUTPUT_DIR="path-to-save-model"
export INSTANCE_DIR="path-to-images"
accelerate launch train_custom_diffusion.py \
--pretrained_model_name_or_path=$MODEL_NAME \
--instance_data_dir=$INSTANCE_DIR \
--output_dir=$OUTPUT_DIR \
--class_data_dir=./real_reg/samples_person/ \
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \
--class_prompt="person" --num_class_images=200 \
--instance_prompt="photo of a <new1> person" \
--resolution=512 \
--train_batch_size=2 \
--learning_rate=5e-6 \
--lr_warmup_steps=0 \
--max_train_steps=1000 \
--scale_lr --hflip --noaug \
--freeze_model crossattn \
--modifier_token "<new1>" \
--enable_xformers_memory_efficient_attention \
--push_to_hub
추론
위 프롬프트를 사용하여 모델을 학습시킨 후에는 아래 프롬프트를 사용하여 추론을 실행할 수 있습니다. 프롬프트에 ‘modifier token’(예: 위 예제에서는 \<new1>)을 반드시 포함해야 합니다.
import torch
from diffusers import DiffusionPipeline
pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs("path-to-save-model", weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion("path-to-save-model", weight_name="<new1>.bin")
image = pipe(
"<new1> cat sitting in a bucket",
num_inference_steps=100,
guidance_scale=6.0,
eta=1.0,
).images[0]
image.save("cat.png")
허브 리포지토리에서 이러한 매개변수를 직접 로드할 수 있습니다:
import torch
from huggingface_hub.repocard import RepoCard
from diffusers import DiffusionPipeline
model_id = "sayakpaul/custom-diffusion-cat"
card = RepoCard.load(model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
image = pipe(
"<new1> cat sitting in a bucket",
num_inference_steps=100,
guidance_scale=6.0,
eta=1.0,
).images[0]
image.save("cat.png")
다음은 여러 컨셉으로 추론을 수행하는 예제입니다:
import torch
from huggingface_hub.repocard import RepoCard
from diffusers import DiffusionPipeline
model_id = "sayakpaul/custom-diffusion-cat-wooden-pot"
card = RepoCard.load(model_id)
base_model_id = card.data.to_dict()["base_model"]
pipe = DiffusionPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16).to("cuda")
pipe.unet.load_attn_procs(model_id, weight_name="pytorch_custom_diffusion_weights.bin")
pipe.load_textual_inversion(model_id, weight_name="<new1>.bin")
pipe.load_textual_inversion(model_id, weight_name="<new2>.bin")
image = pipe(
"the <new1> cat sculpture in the style of a <new2> wooden pot",
num_inference_steps=100,
guidance_scale=6.0,
eta=1.0,
).images[0]
image.save("multi-subject.png")
여기서 ‘고양이’와 ‘나무 냄비’는 여러 컨셉을 말합니다.
학습된 체크포인트에서 추론하기
--checkpointing_steps
인수를 사용한 경우 학습 과정에서 저장된 전체 체크포인트 중 하나에서 추론을 수행할 수도 있습니다.
Grads를 None으로 설정
더 많은 메모리를 절약하려면 스크립트에 --set_grads_to_none
인수를 전달하세요. 이렇게 하면 성적이 0이 아닌 없음으로 설정됩니다. 그러나 특정 동작이 변경되므로 문제가 발생하면 이 인수를 제거하세요.
자세한 정보: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html
실험 결과
실험에 대한 자세한 내용은 당사 웹페이지를 참조하세요.
< > Update on GitHub